Одновременное изучение трех единиц площади дает возможность использовать для демонстрации измерения площади фигур и вывода правила вычисления площади любые единицы (удобнее квадратные дециметры).
Следующий урок посвящается применению единиц площади для измерения площади различных прямоугольников. На нем дети усваивают правило измерения площади путем наложения на поверхность фигуры квадратных единиц и определения их числа пересчитыванием.
Дети умеют измерять длину единицей длины и специальным инструментом – линейкой. Для измерения площади такого инструмента нет, но есть единицы измерения - квадратный сантиметр, квадратный дециметр. На уроке учитель учит детей пользоваться этими единицами.
Для этого вывешивает прямоугольник из картона. На нем тонкие ленты из резинки (лески) для крепления квадратных единиц (квадратных дециметров). Учитель на глазах у детей выкладывает квадратные дециметры двух цветов, чередуя их рядами, на всей поверхности прямоугольника. В результате квадраты располагаются, как на шахматной доске. Дети видят, что прямоугольник покрыт квадратными единицами. Это очень важно для понимания измерения площади квадратными единицами. Дети считают их. Учитель рядом записывает число квадратных единиц, т. е. величину площади. Затем он предлагает детям взять на парте прямоугольник определенного цвета и определенного размера, выложить на его поверхности квадратные сантиметры, пересчитать их и записать количество в тетради. После проверки учитель предлагает начертить в тетрадях прямоугольник определенного размера, но так, чтобы линии прямоугольника совпали с линиями клеток тетрадного листа. Считая четыре клеточки листа за 1 кв. см, просит раскрасить в два цвета квадратные сантиметры, чередуя цвета, затем определить площадь этого прямоугольника путем пересчета квадратных единиц. Дети с большим интересом выполняют такие практические работы, одновременно осознанно усваивая понятие о том, что площадь измеряют единицами площади (у них остается в памяти яркая сетка квадратных дециметров или квадратных сантиметров на поверхности).
В качестве домашнего задания предлагается измерить путем наложения квадратного дециметра площадь стола или двери. Для этого достаточно иметь одну квадратную единицу (квадратный дециметр).
На следующем уроке изучается правило вычисления площади прямоугольника. Рассмотрим последовательность работы.
Для этого учителю нужны прямоугольник, на котором было бы удобно выкладывать и крепить квадратные дециметры, и необходимое количество квадратных дециметров двух цветов. На партах детей приготовлены прямоугольники и необходимое число квадратных дециметров двух цветов. Прикрепив к доске прямоугольник размером 5 дм ×4 дм, учитель просит детей измерить его площадь. Сначала он выясняет, что рассмотренный выше способ не всегда удобен для измерения площади фигуры. Затем спрашивает, сколько квадратных дециметров можно выложить в один ряд по длине прямоугольника. (Выкладывает квадратные дециметры, чередуя их цвета.) А сколько таких рядов уложится по ширине прямоугольника? (Выкладывает квадратные дециметры по ширине и определяет число рядов.) В беседе с детьми учитель выясняет, что если в один ряд уложилось 5 квадратных дециметров, а таких рядов 4, то всего в прямоугольнике квадратных дециметров 20, т. е. 20 дм2. Это рассуждение записывается на доске:
5∙4=20 (дм2)
Учитель подчеркивает, что, рассуждая таким образом, мы найдем число квадратных дециметров, или вычислим площадь данного прямоугольника. Снова выясняем неудобство такого способа определения числа квадратных единиц, или площади прямоугольника. Учитель оставляет на доске второй прямоугольник с уложенными на нем квадратными дециметрами и записью вычисления.
Вывешивает третий прямоугольник такого же размера и проводит беседу:
- Сможем ли мы узнать, сколько уложится квадратных дециметров в один ряд по длине прямоугольника, не выкладывая их? (Да, сможем.) Как это можно узнать? (Нужно измерить длину прямоугольника.) Чему она равна? (5 см.) Запишем это (на доске запись: 5). Можно узнать, сколько таких рядов уложится по ширине прямоугольника, не выкладывая их? (Можно.) Что для этого нужно знать? (Измерить длину прямоугольника.) Чему она равна? (4 см.) Запишем это (на доске запись: 5-4).
Эта запись выполняется четко, числа записываются крупно и разным цветом. Используя прямоугольник и сделанную запись, учитель продолжает беседу:
- Что обозначает в записи число 5? (Число квадратных дециметров, уложенных по длине.) А еще что обозначает число 5? (Длину прямоугольника.)
Учитель под числом 5 записывает слово длина.
- Что обозначает в записи число 4? (Число рядов по ширине.) А еще что обозначает число 4? (Ширину прямоугольника.)
Учитель под числом 4 записывает слово ширина.
На доске получается запись:
5 ∙ 4
длина ширина
- Как можно определить число квадратных дециметров, которые уложились бы на этом прямоугольнике? (Нужно 5 умножить на 4, получится 20 дм2.)
Учитель продолжает запись на доске:
5 ∙ 4 = 20 дм2
длина ширина площадь
- Обратите внимание на запись: 5 — это длина, 4 — ширина прямоугольника, а 20 дм2 — это площадь. Сделайте вывод, как можно вычислить площадь прямоугольника. (Чтобы вычислить площадь прямоугольника, нужно длину умножить на ширину.)
- В каких единицах получим площадь? (Площадь получим в квадратных единицах.)
На доске три одинаковых прямоугольника, три записи, три результата площади. При сравнении этих результатов и способов определения площади особо подчеркивается, что в первом случае площадь получили измерением, а в двух последних — вычислением. В практике для вычисления площади пользуются третьим способом. Но самое главное, о чем учитель просит не забывать детей, что при вычислении площади всегда получается число квадратных единиц.
После объяснения проводится практическая работа с имеющимся у детей дидактическим материалом. Сначала дети вычисляют площадь прямоугольника, выкладывают квадратные сантиметры в один ряд по длине и определяют число таких рядов, на основе полученных результатов вычисляют площадь и делают запись в тетрадях. Затем вычисляют площадь такого же прямоугольника на основе изученного правила, для чего измеряют длину, ширину, делают необходимые вычисления и запись. Сравнивают полученные результаты. Только после этой работы дети приступают к решению задач, данных в учебнике.
Для более осознанного понимания вычисления площади прямоугольника полезно провести практические работы. Можно измерить и вычислить площадь пола спортзала, спортивной площадки, части площади пришкольного участка, пола классного помещения и других объектов. При нахождении площади прямоугольника учителю нужно быть внимательным, особенно при использовании правила для вычисления площади, получения и записи числа квадратных единиц.
Чтобы предупредить смешение понятий площадь и периметр, необходимо, посвятить специальный урок для практической работы с настольным полигоном — прибором, копирующим в миниатюре пришкольный участок. Взять фанеру размером 40×60 см, разделить ее на квадратные дециметры и раскрасить их в виде шахматной доски. Лист укрепить на ножках. По линии периметра сделать изгородь из любого материала высотой 8—10 см. Можно изготовить ворота — вход на участок. А затем предложить детям решить задачу: «Длина участка, занятая земляникой, равна 6 м, ширина 4 м. Найти площадь участка и длину забора, которым обнесен участок».
Для решения задачи используется полигон. Проводится беседа по вопросам: какую форму имеет участок, обнесенный забором? Как вычислить площадь этого участка? Чему она равна? В каких единицах получим площадь? Какими единицами можно измерить длину забора? Как можно вычислить длину забора?
Решение задачи дети записывают в своих тетрадях, учитель на доске:
1) 6∙4=24 (м2) – площадь участка;
2) 6∙2+4∙2=12+8=20 (м) – длина забора, или периметр.
Ответы: 24 м2, 20 м
Если позволяют условия, то аналогичную работу по вычислению площади прямоугольного участка и нахождению длины забора можно провести на своем огородном или дачном участке.
Использование полигона на уроке помогает детям наглядно видеть различие между площадью и периметром, правилами их вычисления и единицами измерения и в дальнейшем меньше допускать ошибок.
2.3 Опытно-экспериментальная работа по изучению особенностей формирования понятия площади и ее измерения у младших школьников
Опытная работа проводилась в МСОШ д. Ибраево, в 3 классе по традиционной программе (1-3) М.И. Моро. Работа проводилась в период преддипломной практики, которая проходила с 11.09.07 по 28.10.07 г.
Опытная работа имеет цель:
- формирование у младших школьников умение различать понятия как величина и ее численное значение;
- формирование у детей навыка единицы длины и единицы площади геометрических фигур;
- закрепление умений правильно определить единицы длины и единицы площади геометрических фигур.
Опытная работа состоит из трех этапов:
1. Констатирующий эксперимент
2. Формирующий эксперимент
3. Контрольный эксперимент
Каждый из этапов имеет свои цели.
1.Констатирующий эксперимент
Цели:
- выявить пробелы в знаниях учащихся по данной теме;
- выявить трудности при изучении данной темы и их причины.
При проведении констатирующего эксперимента учащимся была предложена следующая работа:
- перевод единицы длины на квадратные сантиметры, на квадратные дециметры, на квадратные метры и т.д.
- определить единицы длины и единицы площади геометрических фигур.
- измерить с помощью линейки периметр, и с помощью модели площадь фигуры.
В ходе проверки работы было выявлено следующее: дети при определении периметра могут записать в ответе единицы площади, а при определении площади, наоборот, записать единицы длины.