«В треугольнике ABC, AB=c, AC=b, BC=a, BD - медиана.
Доказать, что
Задача: «Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная» - является примером задач второго вида.
Решения этих задач были разобраны выше.
Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов.
Решение:
Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности
Пример 2. Доказать, что сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей. (Теорема Эйлера)
Решение: Введем прямоугольную систему координат как показано на рисунке 12.
AD2=
AC2=
Запишем выражение, которое необходимо доказать, используя найденные нами значения.
AD2+BC2+DC2+AB2=AC2+BD2+4LP2
Раскроем скобки, приведем подобные и получим верное равенство 0=0. Значит, сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей.
Пример 3. Диаметры ABи CD окружности перпендикулярны. Хорда ЕА пересекает диаметр СD в точке К, хорда ЕС пересекает диаметр АВ в точке L. Докажите, что если СК:KD так же как 2:1, то AL:LB так же как 3:1.
Решение: Введем прямоугольную систему координат, направив оси по данным диаметрам ABи CD(рис. 13).
Радиус окружности будем считать равным 1. Тогда точки А, В, С, D будут иметь координаты (-1,0), (1,0), (0,-1), (0,1) соответственно. Так как СК:KD=2:1, то точка К имеет координаты (0,
Найдем абсциссу точки L. Прямая СЕ задана уравнением
Задачи
1. Доказать, что если в треугольнике две медианыконгруэнтны, то треугольник равнобедренный.
2. Найти множество таких точек Р, что отношениерасстояний от каждой из них до двух данных точекравно а.
3. Докажите, что уравнение окружности с центром в точкеС (а,с) и радиусом r имеет вид: (х-а)2+(у-с)2=r2
4. Найти угол между прямыми Зх-4у+6=0 и 12х+5у+8=0
5. Определите расстояние от точки А(-3,4) до прямой у=х+2.
6. Вычислите площадь треугольника, вершины которого имеют следующие координаты: А (0,-2), В(6,2) и С(2,4) .
7. На прямой с даны три точки А, В, С так, что точка В лежит между точками А и С. В одной полуплоскости с границей а построены равносторонние треугольники АМВ и ВРС. Доказать, что середина отрезка РА, середина отрезка МС и точка В являются вершинами равностороннего треугольника.
8. Доказать, что для любой точки Р лежащей междувершинами В и треугольника ABC, справедливоравенство :
АВ2*РС+АС*ВР-АР2*ВС=ВС*ВР*РС.
9. Дан прямоугольник. Докажите, что сумма квадратоврасстояний от произвольной точки, принадлежащейплоскости этого прямоугольника до его вершин, в двараза больше суммы квадратов расстояний от этой точкидо сторон прямоугольника.
10.Доказать, что если через некоторую точку М провестипрямую, пересекающую окружность в точках А и В, топроизведение МА*МВ постоянно и не зависит отположения прямой.
11.Дан прямоугольник ABCD. Найти множество точек М, длякоторых MA2+MC2=MB2+MD2. (ответ: множество точек Месть плоскость)
12.Дан прямоугольник ABCD. Найти множество точек М, длякоторых MA+MC=MB+MD. (Ответ: пара прямых)
13.Дан прямоугольный треугольник ABC (ÐC=90°) . Найти множество точек Р, для которых 2РС2=РА2+РВ2. (ответ: множество точек Р есть прямая, содержащая середину М гипотенузы АВ и перпендикулярная к медиане СМ).
2. 4 Опытное преподавание
Опытное преподавание проводилось в 9 классе средней общеобразовательной школы №51. Перед его проведением была изучена математическая и методическая литература и разработана методика проведения факультатива. Было проведено 2 занятия. В данном классе изучение геометрии ведется по учебнику [2], поэтому в качестве основного теоретического и практического источника я выбрала данный методический комплект.
I. Занятия проводились по теме «Простейшие задачи в координатах», до ознакомления с которыми учащиеся изучали тему «Векторы», познакомились с понятием «координаты вектора», а также узнали формулу середины отрезка.
1 занятие: «Простейшие задачи в координатах»
Образовательная цель урока – рассмотреть задачи о вычислении длины вектора по его координатам и по координатам его начала и конца; показать, как они используются при решении других задач.
Содержание урока:
-Вначале урока был проведен устный счет для проверки усвоения материала, разобранного на прошлом уроке, а также для проведения пропедевтической работы по повторению тех понятий и фактов, которые будут использованы при объяснении нового материала.
Устный счет:
1. Координаты точек А(-2, 3) и В(2, -4). Найдите координаты векторов
2. Координаты точек М(5,-8) и Р(-3, 4). Найдите координаты точки О (О – середина отрезка МР).
3. СР – диагональ окружности; С(-2, -1), Р(5, 7). Найдите координаты центра окружности – точки Е.
4. ABCD– прямоугольник, АD=7, АВ=5. Найдите АС.