Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения. Подход основан на трактовке понятия функции более позднего времени: вторая половина XIX в. – XX в.
Логический подход охватывает множества разной природы. Такое определение по структуре простое, позволяет чётко дать некоторые определения, относящиеся к функциональной линии, которые при генетическом подходе сделать нелегко (обратная функция и так далее).
Таким образом, если генетический подход оказывается недостаточным для формирования функции как обобщенного понятия, то логический обнаруживает определённую избыточность. Отметим, что различия в трактовках функции проявляется с наибольшей резкостью при введении этого понятия. В дальнейшем изучении функциональной линии различия постепенно стираются, поскольку изучается в курсах алгебры и начал анализа не само понятие функции, а в основном конкретно заданные функции и классы функций, их разнообразные приложения в задачах.
В настоящее время в школьном курсе математики используется генетический подход.
1.4. Функциональная пропедевтика.
Основные задачи пропедевтики решают функциональные упражнения. Часть таких упражнений рассматривается в начальных классах, основное внимание им должно быть уделено в 5–6 классах.
Виды упражнений:
1) Упражнения с переменными, например, вычисление значений буквенных выражений при различных значениях переменных. Такие задания постепенно приводят к понятию функции и готовят учащихся к усвоению аналитического способа задания функции. При решении таких упражнений вычисления лучше записывать в форме таблицы, что готовит учеников к усвоению табличного способа задания функции.
2) Упражнения на составление формул при решении задач и наоборот задач по готовым формулам.
3) Упражнения на изменение результатов действий в зависимости от изменения компонентов, например, как изменяется сумма, если слагаемое изменяется на столько-то.
4) Упражнения на координатной прямой, координатной плоскости и в чтении графиков.
В 5 классе учащиеся должны уметь решать 2 задачи: изображать точку по координате и находить координату точки на луче, а в 6 классе эти задачи переносятся на координатную плоскость.
1.5. Введение понятия функции, способов её задания и исследования.
Введение понятия функции.
Для введения понятия функции используется конкретно-индуктивный путь, поэтому полезно использовать метод проблемного изложения, разобрать несколько задач с подчёркиванием существенных признаков понятия (одна переменная зависит от другой, однозначная зависимость). Примеры должны быть разнообразными по содержанию, несущественные признаки должны варьироваться (несущественным является способ задания функции: формула, график, таблица). Необходимо подобрать контрпример для разных способов задания функции, выделить критерий, по которому можно определить, является ли зависимость функциональной (при каждом способе задания).
Критерии:
- Если зависимость задана таблицей, то в первой строчке не должно быть одинаковых чисел.
- В случае, когда функция задана графически, то любая прямая, параллельная оси Оу, должна пересекать график не более чем в одной точке.
- Если функция задана аналитически, то нужно следить за единственностью значений соответствующих зависимостей, например, .
При введении понятия «функция» следует обратить внимание на переход от одной формы задания функции к другой. В школе, как правило, он осуществляется по схеме: аналитическая модель ® таблица ® график. Для введения конкретных функций лучше использовать схему: словесная модель ® таблица ® график ® аналитическая модель.
Очень важно, чтобы учащиеся понимали, что одна и та же функция может быть задана и формулой, и таблицей, и графиком, но не всякая (некоторые функции, заданные графически, не могут быть заданы формулой, например, кардиограммы).
При введении записи
необходимо, чтобы учащиеся понимали смысл буквы f, которая означает закон соответствия.Способы исследования функций:
Содержание этой учебной задачи заключается в том, чтобы средствами, которыми владеют учащиеся в это время, устанавливать все свойства функции.
Выделяют три способа исследования функции: аналитический (исследование элементарными средствами и исследование с помощью производной), графический и комбинированный метод.
Результатом аналитического метода является построение графика функции. При исследовании используются уравнения и неравенства.
При графическом методе по точкам строится график, и с него считываются свойства.
Комбинированный метод используется в двух смыслах:
1) часть свойств обосновывается аналитически, а часть – графически;
2) сначала строится график по точкам, считываются свойства, а затем они доказывается без всякой опоры на график.
Необходимо уже в основной школе чётко разграничивать языки, на которых рассматриваются свойства функций: словесный, графический, аналитический.
Схема для чтения свойств функции :
Свойства функции | Аналитически это означает | Графически это означает |
1. Область определения | Переменная х в формуле может принимать значения … | Это множество абсцисс… |
2. Область значений | Переменная у в формуле может принимать значения … | Это множество ординат точек графика … |
3. Нули функции | при х =…(корни уравнения) | Это абсциссы точек пересечения графика с осью Ох |
4. Функция принимает значения: а) больше а б) меньше а | а) , если х ... б) , если х ... | а) График расположен выше прямой у = а при х =... б) График расположен ниже прямой у = а при х =... |
5. Функция принимает значения, равные значениям функции | , если х =... | График функции пересекает график функции , при х =... |
6. Функция принимает значения а) больше значений функции б) меньше значений функции | а) , если х ... б) , если х ... | а) График функции расположен выше графика функции , при х =... б) График функции , расположен ниже графика функции , при х =... |
7. а) функция возрастает на множестве М б) функция убывает на множестве М | Пусть х1, х2ÎМ, а) если , то б) если , то | а) с увеличением абсцисс точек на множестве М график функции «поднимается» вверх. б) с увеличением абсцисс точек на множестве М график функции «опускается» вниз. |
Схема изучения конкретных функций:
1. Рассмотреть конкретные ситуации (или задачи), приводящие к данной функции.
На этом этапе изучения учащиеся должны убедится в целесообразности изучения данной функции, исходя из соображений практики или необходимости дальнейшего развития теории.