«Чтобы выразить проценты десятичной дробью, нужно число, стоящее перед знаком %, разделить на 100 или, что то же самое, умножить на 0,01»
№ 596.[15] Выразить десятичной дробью:
а) 2,5%, 18,3%, 1,6%, 54,5%;
б) 0,1%, 0,5%, 0,3%, 0,7%;
в) 120%, 137%, 240%, 350%.
Предлагается рассмотреть разные способы решения той или иной задачи.
Пример 2. [15] Мужская рубашка стоила 8200 р. Сколько она стала стоить, когда ее цена увеличилась на 35%?
Так как 35% – это 0,35, то надо найти 0,35 от 8200 р.:
(р.) (на столько повысилась цена).Теперь найдем новую цену:
8200+2870=11070 (р.).
Можно рассуждать иначе. Старая цена составляет 100%, а новая – на 35% больше, т.е. она составляет 135%. Так как 135% – это 135:100=1,35, то цена увеличилась в 1,35 раза.
Имеем:
(р.).Также учащиеся знакомятся с задачами типа К2. Но авторы рассматривают эти задачи в рамках упражнений группы Б (более сложных).
№ 606. [15] В первый час работы продавец продал 40 кг яблок. Это составило 16% от первоначального количества яблок. Сколько килограммов яблок было у продавца первоначально?
В пункте «Выражение долей в процентах» центральной является задача об определении того, сколько процентов одна величина составляет от другой.
619. В избирательном округе 2500 избирателей. В голосовании приняли участие 1300 избирателей. Какой процент избирателей участвовал в голосовании?
Здесь принят подход, в соответствии с которым сначала находят, какую часть одна величина составляет от другой, выражают ее при необходимости десятичной дробью, а затем – в процентах.
Не следует торопиться приступать к решению новых задач. В учебнике предлагается система упражнений, в которых предлагается выразить дробь (обыкновенную или десятичную) в процентах.
№ 615. [15] Прочитайте предложение, выразив дробь в процентах:
а) бензином заполнили
бака;б)
учащихся школы едут в школу на автобусе;в) масса сушеной вишни составляет
массы свежей вишни;г) магазин продал
привезенного сахара.Одна из особенностей вычислительной линии курса состоит в формировании умений выполнять прикидку или оценку результата вычислений. При изучении процентов эта работа, естественно, продолжается. Учащимся предлагаются задачи из повседневной практики, в которых требуется найти приближенно с помощью прикидки процент от заданной величины. Для этого достаточно заменить данные другими числами, близкими к ним и удобными для расчетов. Так, если требуется прикинуть, чему равно 19% от какой-либо величины, то находят 20% этой величины, т.е. ее пятую часть.
№ 595. [15] Перед Новым годом магазин снизил цены на товары на 25%. На сколько примерно рублей понизилась цена товара, если до снижения она составляла 799 руб.? 1980 руб.? 11890 руб.?
№ 629. [15] Часть фигуры заштрихована (см. рис 4.). Определите, какой примерно процент фигуры заштрихован, выбрав наиболее подходящий ответ из данных.
Рис. 4
Третий этап в изучении процентов отнесен к 7классу. В силу возрастных возможностей семиклассников и уже накопленного ими опыта работы с процентами учащимся становятся доступными многие вопросы из тех, что традиционно не рассматривались со всем классом, а изучались лишь в качестве дополнительных в работе с сильными учениками. Учащиеся уже знакомы со всеми основными видами задач, теперь они осваивают другие способы их решения, которые были им неизвестны.
В первой главе учебника выделен пункт «Решение задач на проценты», в котором помещен материал, позволяющий вспомнить сведения из шестого класса и продвинуться в решении задач. Теперь есть возможность рассмотреть более сложные в техническом отношении задачи. Они требуют достаточно прочного навыка представления процентов дробью и наоборот, умение находить процент от величины, понимание того, какая из величин, участвующих в задаче, принимается за 100%. Поэтому в начале теоретической части пункта рассматриваются приемы, с помощью которых десятичная дробь выражается в процентах и наоборот; здесь специально выделяется вопрос о «маленьких» (меньше 1%) и «больших» (больше 100%) процентах, как наиболее трудный для усвоения.
№ 99. [18] В состав одного из поливитаминов входят минералы в следующих количествах: кальций и фосфор – по 4%, магний – 1,6%, железо – 0,07%, цинк – 0,06%. Сколько миллиграммов каждого минерала содержится в одной таблетке поливитамина, масса которой 25 г?
№ 88. [18] В конце 1996 г. рабочим была выплачена премия в 250% ежемесячной зарплаты. Какую премию получил рабочий, зарплата которого была 550 тыс. р.?
Предлагаемые в системе упражнений задачи, как правило, допускают разные способы рассуждений, и учащиеся самостоятельно выбирают более удобный и понятный для себя.
Кроме задач на нахождение процента от величины, рассматриваются задачи на нахождение величины по известному ее проценту.
№ 107. [18] После повышения цены на 30% книга стала стоить 52 рубля. Сколько стоила книга до повышения цены?
Решение. Первоначальная цена книги составляет 100%. Поэтому 52 руб., т.е. цена после подорожания, составляет 100%+30%=130% от первоначальной цены. Теперь можно решить задачу на нахождение величины по известному ее проценту.
Рассуждать можно по-разному:
1) 1% – это 52: 130=0,4(руб.), а 100% – это 0,4* 100=40(руб.);
2) 10% – 52:13=4(руб.), 100% – это 4*10=40(руб.);
3) 130% – это 1,3, поэтому 52 руб. составляют 1,3 первоначальной цены, а поэтому первоначальная цена равна 52:1,3=40(руб.).
Следует отметить еще один методический подход, использованный в изучении процентов. Первую главу заключает раздел «Для тех, кому интересно», в котором учащиеся еще раз встречаются с задачами на проценты. Здесь рассматривается восемь, если можно так выразиться, «классических олимпиадных» задач. Обычно они не включаются в учебники, т.к. являются трудными. Приведено более простое решение такого класса задач. Следует уделить им внимание хотя бы на кружке.
Задача. [18] Книга дороже альбома на 25%. На сколько процентов альбом дешевле книги? Вся методика обучения решению задач, принятая в учебнике, позволяет показать учащимся наглядный способ их решений с помощью рисунков (см. рис. 5). Хотя, конечно, эти задачи можно решать и арифметически.
Решение:
Цена альбома – 100%. Изобразим ее каким–либо отрезком
Увеличим этот отрезок на 25% т.е. на его части; получим отрезок, соответствующий цене книги.
Теперь цена книги составляет 100%. Она изображена большим отрезком. Цена альбома меньше цены книги на этого отрезка. Так как составляет 20%, то альбом дешевле книги на 20%.
Рис. 5
При изучении следующей главы «Отношения и пропорции» учащиеся активно пользуются опытом работы с процентами и приобретают новый. В систему упражнений нужно включить новые задачные ситуации.
№ 191.[18] В сплав входят медь, олово, сурьма в отношении 4:15:6. Сколько процентов сплава составляет каждый металл? («Деление в данном отношении»)
№ 252. [18] За определенное время с помощью принтера было распечатано 30 страниц. Сколько страниц распечатает принтер, производительность которого на 50% больше? («Прямая и обратная пропорциональность»)
№ 269. [18] Автомобиль за 2,4 ч проехал 60% всего пути. Через сколько минут ему останется проехать четверть всего расстояния, если он будет двигаться с той же скорость? («Решение задач с помощью пропорций»)
По мере овладения новым математическим аппаратом при изучении алгебры, учащиеся осваивают новый прием решения расчетных задач на проценты – с помощью составления уравнения.
№ 501. [18] Вкладчик открыл в банке счет. Через год на его счету было 360000 руб., что составило 120% от суммы, которую он внес первоначально. Сколько рублей внес вкладчик при открытии счета?
В VIII классе в теме «Алгебраические дроби» учащиеся снова обращаются к задачам на проценты. Задачи на «концентрацию», «сплавы», «банковские расчеты» – это хорошие примеры практических задач, позволяющих продемонстрировать, как формальные алгебраические знания применяются в реальных жизненных ситуациях. Для того чтобы помочь учащимся осознать на новом уровне подход к решению задач с процентами, стоит обратить их внимание на то, что в учебнике приводятся образцы решения ряда задач. К разобранному образцу учащиеся при желании может вернуться вновь и использовать его в качестве опоры при решении подобной задачи.
№ 187. [17] Разберите, как по условию задачи составлено уравнение и решите задачу. Клиент открыл счет в банке на некоторую сумму денег. Годовой доход по этому вкладу составляет 11%. Если бы он добавил 800 руб., то через год получил бы доход 220 руб. Какая сумма была внесена им в банк?
Решение. Пусть х руб. – сумма, которую клиент внес в банк. Тогда (х+800) руб. было бы на вкладе, если бы клиент добавил 800 руб.;