Смекни!
smekni.com

Розвиток в учнів початкових класів умінь розвязувати складені задачі (стр. 8 из 12)

О.М. Дудко, учителька початкових школи № 9, м. Києва вважає, що на сьогоднішній день у багатьох школах учнів початкових класів поділяють на "сильних", "середніх" і "слабких" з відповідною комплектацією класів. У "сильних" класах процес навчання відбувається з випередженням, що дозволяє вчителю доповнити підручник задачами з інших джерел або їх скласти самостійно.

Додаткові вправи, дібрані класоводом, можуть включати задачі на знаходження чисел за їх сумою і різницею, задачі на суму і кратне відношення двох чисел, на припущення, на заміну, на порівняння даних. Це завдання підвищеної складності з логічним навантаженням. Розв’язування їх потребує нестандартного творчого підходу.

Ось наприклад, задача "Математика-3":

Найбільша тварина на землі - голубий кит. Його маса 120 т. У скільки разів маса кита більша за масу слона, що дорівнює 5 т?

Для сильних учнів вчитель може ускладнити цю задачу, змінивши її умову так, щоб були відомі сума та різниця мас голубого кита і слона, а вимагалось знайти масу кожного окремо.

Отже, новий варіант:

Голубий кит важить більше слона на 115 т. Маса голубого кита і слона разом 125 т. Яка маса кожної тварини?

Доцільно запропонувати школярам такі запитання:

Якщо зобразити відрізками маси тварин, який відрізок буде довший і на скільки?

Що означає - 125 т, 115 т?

Розв’язання

1) 125-115=10 (т) - подвійна маса слона;

2) 10: 2=5 (т) - маса слона;

3) 5+115=120 (т) - маса голубого кита.

Перевірка: 120+5=125 (т) - загальна маса тварин.

Відповідь: маса слона - 5 т, голубого кита - 120 т.

Після цього можна запропонувати учням задачу на рух. Наприклад:

Катер спустився вниз по річці від пристані А до пристані В зі швидкістю

17 км на год і повернувся назад зі швидкістю 13 км на год. Чому дорівнює швидкість течії річки і швидкість катера у стоячій воді?

Слід пояснити школярам те спільне, що є у розв’язуванні цих задач, а саме: невідомі числа знаходяться за їх сумою і різницею.

Корисно запропонувати і таку задачу:

Брат сказав сестрі: "Якщо ти віддаси мені 5 яблук, то в мене їх стане вдвічі більше, ніж у тебе". Сестра заперечила брату: "Краще ти віддай мені 5 яблук і у кожного з нас буде порівну". Скільки яблук у брата і скільки у сестри?

Аналогічно ряд задач з підручника математики для 3 класу вчитель може перетворити в задачі на знаходження невідомих за сумою і кратним відношенням, помінявши відповідно числові дані і умову без зміни сюжету.

Наприклад:

Першого дня вантажна машина вивезла з поля 360 ц картоплі, це на 50 ц менше, ніж другого дня. Скільки центнерів картоплі вивезла машина за два дні?

Сильним учням можна запропонувати ускладнену задачу:

Першого дня вантажна машина вивезла з поля в два рази менше картоплі, ніж другого дня. Всього за два дні машина вивезла 960 ц картоплі. Скільки картоплі вона вивезла за перший та другий день окремо?

Скорочений запис умови задачі можна виконати у вигляді графічної схеми.

I |___________|

360 цт

I I |___________|___________|

Користуючись малюнком, учні зможуть зробити висновок: за перший день вивезли 1частину, за другий - 2 частини картоплі, а всього - 3 рівні частини.

Розв’язання

960: 3 = 320 (ц) - вивезла машина першого дня;

320 • 2 = 640 (ц) - вивезла машина другого дня.

Перевірка: 320 + 640 = 960 (ц) - усього вивезла машина.

Відповідь: в 1 день машина вивезла 320 ц, у 2 день - 640 ц.

Дану задачу можна ще ускладнити, записавши її умову, наприклад так:

У перший день вантажна машина вивезла з поля на 5 ц більше подвійної маси картоплі, вивезеної нею за другий день. Всього за два дні машина вивезла 965 ц картоплі. Скільки картоплі вона вивезла за перший та другий день окремо?

При розв’язуванні подібних задач найбільш поширені помилки у визначенні кількості рівних частин, що містяться у поданій сумі, внаслідок неправильного тлумачення малюнка або неточного його виконання. Можна розв’язати, не виконуючи малюнка, але він допомагає учням уявити умову більш виразно.

Зрозумілі і цікаві третьокласникам задачі на заміну. Наприклад:

По подвір’ю ходять коти і кури. Всього у них 30 ніг і 12 голів. Скільки курей і котів на подвір’ї?

Можна міркувати так: голів 12, тобто 12 котів і курей разом. Якщо замінимо котів на курей, то одержимо 2 12=24 (ноги), а ніг 30.30-24=6 (ніг). На 6 ніг більше тому, що на подвір’ї є коти, у кожного з яких на 2 ноги більше, ніж у курки.6: 2=3. Значить на подвір’ї 3 коти і 12-3=9 (курей).

Декілька цікавих задач на порівнювання даних є в підручнику математики для 3 - 4 класів. Вчителі можуть доповнити їх кількість.

Наприклад:

Маса 2 соснових і 3 ялинкових колод - 1 т 170 кг, а маса 4 соснових і 5 ялинкових колод - 2т 90 кг. Яка маса ялинкової колоди?

Розв’язання

Збільшимо кількість соснових і ялинкових колод, наведену в першій частині умови, в 2 рази, їх маса теж збільшиться у 2 рази:

4 сосн. і 6 ялин. - 2 т 340 кг.

Порівняємо з тим, що маса 4 соснових і 5 ялинкових - 2 т 90 кг. Звідси маса ялинкової колоди дорівнює: 2 т 340 кг - 2 т 90 кг = 250 кг.

При складанні цієї задачі вчитель бере масу колод і їх кількість для двох випадків, які потім можна порівнювати за кількістю тих чи інших колод. Такий принцип зберігається і при зміні сюжету задачі [30, 16].

Козлова С.Ю., вчитель математики Новобузької загальноосвiтньої школи I - IІІ ст. № 1 застосовуючи диференцiацiю в своїй роботi, дaє можливiсть кожному учневі працювати на будь-якому piвнi навчальних досягнень i здобути вiдповiднi результати. Учень мaє не тiльки обов’язки (зокрема, засвоїти матеріал на відповідному рівні), а й права, найважливiшим з яких є право вибору - отримати вiдповiдно до своїх здiбностей i нахилів підвищену підготовку з предмета чи обмежитись середнiм або достатнiм рiвнями засвоєння матеріалу.

Вчитель органiзовує навчання на всіх чотирьох рівнях навчальних досягнень (початковий, середнiй, достатнiй та високий), а учень сам вибирає

рівень засвоєння навчального матеріалу.

Серед позитивних результатiв диференцiацiї Козлова С.Ю. називає такi:

зменшення навантаження на дiтей, якi iнколи не тiльки з соцiальних, а й з фiзiологiчних причин не можуть опанувати високий piвень навчальних досягнень;

отримання кожним учнем потрiбного саме йому змісту навчання математики;

зникнення страху учня перед оцінюванням.

Способи диференцiювання навчальних завдань досить розмаїтi.

Назвемо тi, якi використовує в своїй практицi Свiтлана Юрiївна:

1) змiст завдань однаковий для всього класу, але для сильнiших учнiв можна зменшити час на виконання, збiльшити обсяг завдання, ускладнити способи виконання;

2) на даному етапi навчання (переважно пiд час закрiплення) рiзним групам дiтей пропонуються рiзнi за складнiстю завдання. Наприклад, сильним учням пропоную уважно прочитати задачу, розв'язати її виразом, скласти подiбну; середнiм - розв' язати задачу двома способами; слабшим - розв' язати задачу дiями за запитаннями;

3) спільне завдання для всього класу, а для слабких дітей - допоміжні матеріали, що полегшують його виконання (зразок, таблиця, відповідь, схема).

Диференцiйованi завдання використовуе на рiзних етапах уроку. Пiд час підготовки учнів до засвоєння складного нового матеріалу такі завдання спрямованi на лiквiдацiю прогалин у засвоєнi учнями опорного матерiалу або розширення чи поглиблення знань i вмiнь.

На етапi засвоєння нових знань диференцiюю процес первинного сприймання i первинного закрiплення. Цiкавим i ефективним тут є прийом 6агаторазового пояснення. Використовуючи даний прийом, до роботи залучає кмiтливих, швидко мислячих дiтей, якi можуть виступати "співавторами" вчителя на ypoці: можуть продовжити пояснення, самостiйно ознайомитися з новим матерiалом, попрацювати 6iля дошки з iншим учнем в ролi вчителя. Розв'язання посильної задачi стимулює до подальшої дiяльностi i пiдвищуе самооцiнку власних можливостей, створює реальні умови до переходу на вищий ступiнь самостiйностi в pоботі.

На етапi закрiплення i застосування знань добирає завдання, якi дають змогу точнiше врахувати, що рiзним групам дiтей потрiбне рiзне за часом i складнiстю навантаження. Клас подiляє на декiлька груп, причому учнi можуть caмі ви6ирати завдання або я визначаю, хто над чим працює. Органiзовую роботу груп по-рiзному. Якщо клас розбито на двi групи (сильнiшi i сла6шi учнi), то одна група працює з допомогою вчителя, а iнша виконує завдання самостiйно або вci учнi класу працюють самостiйно, але сильнiшi учнi отримують бiльш складне завдання, слабшi учнi - бiльш просте.

Плануючи диференцiйованi завдання, Козлова С.Ю. обов'язково зiставляе їх мету i змiст з piвнем знань i розвитку учнiв, шукаю спiльне в змiстi й xapaктepi завдань, без чого не можна правильно визначити для кожної групи ступiнь складностi, необхiдний i посильний об'єм роботи. Лише за цих обставин створюються сприятливi умови для найповнiшого розвитку здiбностей, вмiння i бажання вчитися.

У процесi використання диференцiйованих завдань здiйснює поступовий перехiд вiд колективних форм роботи учнів до частково самостiйних i повнiстю самостiйних у межах уроку або системи ypоків. Такий пiдхiд дає можливiсть учням брати участь у виконаннi завдань, складнiсть яких зростає [37, 11].

Наприклад задача для 4 класу № 247.

5 кг лучного сіна за поживністю замінять 7 кг вівсяної соломи. Скільки потрібно кілограм вівсяної соломи, щоб замінити 15000 кг лучного сіна? [10,38].

I картка

1. Прочитай задачу.

2. Порівняй із задачею № 245.

3. Закінчи скорочений запис і повтори задачу.

5 кг -

кг