Смекни!
smekni.com

Розвиток в учнів початкових класів умінь розвязувати складені задачі (стр. 9 из 12)

кг - ?

4. Розв’яжи задачу, записуючи план розв’язування.

1) Скільки разів по 5 кг міститься в 15000?

2) Скільки потрібно кілограм вівсяної соломи, щоб замінити 15000 кг лучного сіна?

5. Запиши відповідь.

II картка

1. Прочитай задачу.

2. Порівняй із задачею № 245.

3. Запиши умову задачі скорочено.

4. Розв’яжи задачу, записуючи план розв’язування.

1) Скільки разів по 5 кг міститься в 15000?

2) Скільки потрібно кілограм вівсяної соломи, щоб замінити

15000 кг лучного сіна?

5. Запиши відповідь.

III картка

1. Прочитай задачу і порівняй із задачею № 245.

2. Запиши умову задачі скорочено.

3. Усно склади план розв’язування.

4. Розв’яжи задачу склавши вираз за схемою:

. ( : )

5. Запиши відповідь.

На уроках математики проблеми в учнів спостерігаються здебільшого під час розв’язування задач. Для того, щоб навчити дитину розв’язувати задачі, необхідно, насамперед, навчити її самостійно працювати над умовою задачі. Тому ознайомлення з умовою задачі планую так, щоб дитина повністю засвоїла її зміст. Для цього пропоную сильнішим дітям прочитати задачу або повторити зміст, а слабшим - дати відповіді на конкретні питання.

Коротко записувати умову задачі та докладно аналізувати всю її недоцільно, - це, здебільшого, потрібно робити під час ознайомлення з новим типом задач. Однак, в подальшому під час розв’язання такого ж типу задач необхідно дібрати до кожної задачі по 2 - 3 питання, відповіді на які дадуть учителеві можливість з’ясувати, чи засвоїли діти зв’язки між даними та шуканими величинами, щоб спланувати подальшу роботу над задачею.

Під час аналізу простої задачі намагаюся частіше звертатися до слабшої групи, щоб вони самі зрозуміли, як потрібно розв’язувати задачу. А під час розгляду складених задач частіше звертаюся до сильних учнів. Час від часу даю цим дітям завдання для самостійної роботи відразу після ознайомлення із задачею, а в цей час працюю з дітьми, які вимагають індивідуального підходу. Щоб робота над розібраною задачею була більш корисною і цікавою, добираю до неї творчі завдання. Саме звертання до творчих здібностей учнів розширює диференціювання самостійної роботи школярів, активізує розумову діяльність кожного учня.

Наприклад, задача, що розв’язується в 2-му класі.

Із першого куща смородини зібрали 9 кг ягід, із другого - на 4 кг більше, а із третього - на 5 кг менше. Ніж із другого. Скільки кілограмів ягід зібрали із третього куща?

Творче завдання для сильної групи: змінити питання, щоб задача розв’язувалася за три дії. Можна навести, як приклад, задачу з 3-го класу.

Два поїзди виїхали одночасно назустріч один одному. Перший поїзд їхав зі швидкістю 65 км/год, а другий - зі швидкістю 70 км/год і проїхав до зустрічі 280 км. Яку відстань проїхав до зустрічі перший поїзд?

Творче завдання для сильної групи: який поїзд проїхав більшу відстань і на скільки більше? Під час розв’язання цієї задачі даю слабким дітям на допомогу картки:

I – слабким

I I - зовсім слабким

1) 280: =

2) . =

У роботі над задачею застосовую метод складання зворотніх задач. Вбачаю дидактичні особливості цього методу в тому, що ті самі число, поняття, величина мають кілька різних зв’язків і визначаються під час розв’язання задачі декількома способами. Зворотня задача є перевіркою прямої. Саме в такому перетворенні вбачаю формування самоконтролю, самостійності в дітей.

Наприклад, в 2 класі під час роботи над задачею "У двох ящиках знаходиться 24 кг груш. У першому на 6 кг груш більше, ніж у другому. Скільки кілограмів груш у першому і другому ящиках?" слабким дітям пропоную розв’язати її за текстом, а для сильних дітей даю наступне завдання: скласти зворотню задачу, в якій потрібно знайти число 24.

Диференційований підхід дає можливість закріплювати вміння та навички, стимулює пізнавальні інтереси дітей, розвиває логічне мислення, сприяє розширенню і поглибленню їхніх знань, формує самостійність, самоконтроль та відповідальне ставлення до навчання.

Під час використання елементів диференційованого навчання на уроках математики важливе значення має використання наочності: дидактичний матеріал, опорні схеми, таблиці для складання задач, ілюстрації.

Засоби зворотнього зв’язку дозволяють урізноманітнити урок, ефективно здійснювати перевірку знань учнів, вчасно виявляти недостатність знань окремих учнів. Для цього використовую сигнальні картки, сигнальний круг із 6 кольорів, планшети, магнітні дошки.

У практиці своєї роботи проводжу уроки - подорожі в країну казок, космічні подорожі та багато інших, які дозволяють виховувати учнів і допомагають використовувати елементи диференціації на уроці.

Будь - який педагог, збуджуючи інтерес до математики, зміцнює віру у свої сили в кожної дитини незалежно від її здібностей. Потрібно розвивати творчі можливості слабких учнів, не даючи зупинитися у своєму розвитку здібним дітям, учити всіх виховувати в себе силу волі, твердий характер і цілеспрямованість під час розв’язання складених задач.

Основне призначення в диференційованих завдань - у тому, щоб, знаючи і враховуючи індивідуальні особливості школярів. Забезпечити для кожного з них оптимальний характер пізнавальної діяльності в процесі навчання. Досвід роботи вчителів засвідчує, що застосування в роботі різних способів диференційованого навчання сприяє більш повному розвитку здібностей кожного учня, бажанню та вмінню вчитися [47, 76].

2.2 Організація, зміст і аналіз ефективності експериментального дослідження

Дипломне дослідження мало теоретико-експериментальний характер і проводилося у два етапи. На теоретичному етапі була визначена сфера і проблема дослідження; вивчалася педагогічна, методична література з даної теми; аналізувалася робота вчителів початкових класів у галузі методики розв’язування складених задач шляхом диференційованого навчання; формулювалася гіпотеза та завдання дослідження.

В процесі експериментального етапу - на основі напрацьованої теоретичної інформації здійснювався формуючий експеримент, пов’язаний із формуванням у молодших школярів умінь і навичок розв’язування складених задач з використанням диференційованого підходу, вивчалася його ефективність та практична значущість.

Формуючий експеримент здійснювався за такими етапами:

власне формуючий експеримент, в процесі якого пропонувалася добірка складених задач і проводилася систематична цілеспрямована робота із формування відповідних навичок та вмінь з використанням диференційованого підходу;

теоретико-узагальнюючий - основна увага спрямовувалася на теоретичний аналіз і узагальнення результатів формуючого експерименту, оформлення роботи та з’ясування подальших перспектив розробленої системи роботи.

Експериментальне дослідження ми проводили у загальноосвітній школі І - ІІ ступенів с. Кальне Зборівського району Тернопільської області. Ним було охоплено 23 учні 3-А класу (експериментального) і 21 учень 3-Б класу (контрольного). У процесі формуючого експерименту ми пропонували третьокласникам систему складених задач різних видів. Ці задачі використовувалися як на уроках, так і на позакласних заняттях з математики і для самостійної роботи учнів.

Розглядаючи різні види складених задач, ми дійшли висновку, що значною мірою розвивається мислення учнів в процесі виконання творчих завдань над розв’язуваною задачею. Подамо контрольні взірці таких завдань, які ми пропонували для учнів контрольного і експериментального класів.

Задачі на знаходження четвертого пропорційного:

1) Дівчинка за 5 конвертів без марки заплатила 60 коп. Потім вона купила ще 9 конвертів. Скільки копійок коштують 9 конвертів?

Творче завдання: змінити питання, щоб задача розв’язувалась за три дії.

2) 5 м тканини коштують 75 грн. Скільки гривень коштують 7 м такої тканини?

Творче завдання: змінити питання, щоб задача розв’язувалась за три дії.

3) В трьох мішках 150 кг борошна. Скільки кілограм борошна в 7 таких мішках?

Творче завдання: змінити питання, щоб задача розв’язувалась за три дії.

Задачі на рух:

1) З двох міст одночасно назустріч один одному виїхали велосипедист і мотоцикліст, які зустрілись через 3 год. Швидкість велосипедиста дорівнює 12 км/год, а мотоцикліста - 50 км/год. Скільки кілометрів становить відстань між містами?

Творче завдання: розв'яжіть задачу іншим способом

Дві велосипедні команди виїхали одночасно з двох селищ назустріч одна одній і зустрілися через 2 год. Перша команда їхала зі швидкістю 12 км/год, а друга - 13 км/год. Знайти відстань між селищами.

Творче завдання: скласти обернену задачу на знаходження швидкості другої команди.

Два катери рухаються по річці у протилежних напрямках. Швидкість першого катера дорівнює 24 км/год, а другого 37 км/год. На скільки кілометрів вони віддаляються один від одного за з год?

Творче завдання: розв'яжіть задачу іншим способом

Задачі на знаходження середнього арифметичного

Велосипедист одну годину їхав зі швидкістю 15 км/год, дві години зі швидкістю 13 км/год і ще одну одну годину зі швидкістю 11 км/год. Знайти середню швидкість велосипедиста.

Творча робота: розв’яжи задачу виразом

Маса першого кроля дорівнює 2 кг 200 г, а другого - 1 кг 600 г.

Знайти середню масу цих кролів.

Творча робота: розв’яжи задачу виразом