Смекни!
smekni.com

Изучение функций и их графиков на элективном курсе по алгебре в 9 классе (стр. 7 из 16)

1) аналитический способ задания функции;

2) графический способ задания функции;

3) табличный способ задания функции.

Учитель сообщает темы рефератов изучаемого курса: «История развития понятия функция», «Функции в нашей жизни», «Великие математики и их вклад в изучении функций» (3 реферата: Эйлер, Лейбниц, Бернулли), «Многочлен Лагранжа», «Построение и чтение графиков функций»,«Разрывные функции», «Графики многочленов», «Занимательные задачи о функциях, их решение», «Красавицы функции и их графики: спираль Архимеда, лемниската Бернулли, гипоциклоида, циссоида, декартов лист» и темы, предложенные самими учащимися. Написание рефератасопровождается созданием презентации (выступление с рефератом и представление презентации на последнем заключительном занятии). Для выполнения творческих заданий учащиеся разбиваются на пары.

Методические рекомендации.Необходимо ввести учащихся в тематику занятий, обозначив круг задач, которые можно будет решать с помощью графиков функций. Учащиеся должны понимать, что графики – наглядный способ решения, а графическое представление функции очень удобно для непосредственного восприятия ее особенностей, характерных свойств. Задания на написание докладов, рефератов и создание презентаций способствуют развитию навыков самообразования, удовлетворению индивидуальных интересов учащихся. Все результаты деятельности учащихся желательно фиксировать в индивидуальной карточке.

Занятие №2. Способы задания функции

Цель: рассмотреть различные способы заданияфункции, научить учащихся применять полученные знания при решении практических задач.

Ход занятия:

Разбор домашнего задания

Учитель спрашивает подобранные учащимися примеры функциональных зависимостей из окружающей жизни, отвечает на вопросы учащихся, выявляет затруднения, возникшие при выполнении домашнего задания.

Изучение нового материала

Учитель формулирует тему и цель данного занятия.

Учащиеся делают доклады по теме «Способы задания функции»:

· аналитический способ задания функции;

· графический способ задания функции;

· табличный способ задания функции.

Учащиеся устно отвечают у доски с использованием необходимых им наглядных средств, и делают соответствующие записи на доске, остальные делают записи в тетрадях. Учитель выслушивает доклады, делает замечания, задает дополнительные вопросы, заостряет внимание учащихся на более сложных моментах.

Закрепление полученных знаний

Учащиеся отрабатывают полученные теоретические знания на практике с помощью решения задач. Задания записаны на доске, учащиеся по очереди выходят к доске и записывают решение, остальные выполняют в тетрадях.

Задание 1. Найдите: а) область определения функций, заданных графически и аналитически; б) множество значений функций 1), 2), 3), 4).

Задайте функции:а) 1), 2), 3) аналитически; б) 5), 8) графически.

1)

2)3)4)

2)

5)

; 6)
; 7)
; 8)
; 9)
;10)
;11)
;12)
[1].

Задание 2.Задает ли данная зависимость какую-нибудь функцию

.

1)

; 2)
; 3)
; 4)
; 5)
.

Подведение итогов занятия

- Какую тему мы изучили сегодня на занятии?

- Какие способы задания функции Вы знаете?

Оцените свою работу на занятии по 5-ти бальной шкале и поставьте соответствующую оценку в карточку результатов деятельности (учитель просит учащихся поднять руки: … кто оценил свою работу на уроке на «5», «4», «3»).

Постановка домашнего задания

Найдите: а) область определения функций, заданных графически и аналитически; б) множество значений функций 3), 4), 9), 10), 11).

Задайте функции: а) 10), 11)аналитически; б)1),4)графически.

1)

;2)
;3)
;4)
;5)
; 6)
;7)
;8)
[9].
9) 10) 11)

Методические рекомендации. При рассмотрении способов задания функции важно сформировать представление об однозначности соответствия аргумента и определенного по нему значения функции. Важным методическим приемом при изучении данной темы являются задания перевода функции из одной формы представления в другую [15]. На этапе закрепления знаний применяется индивидуальная форма обучения учащихся. Все результаты деятельности учащихся (выступление с докладом, ответы на вопросы по домашнему заданию, решение заданий на доске, активное участие в ходе всего занятия) фиксируются в индивидуальной карточке.

Тема 2. Преобразования графиков

Занятие №3. Перенос вдоль оси ординат

Цель: изучить преобразование графиков функций при помощи переноса вдоль оси ординат, научить учащихся строить графики функций, используя данное преобразование.

Ход занятия:

Разбор домашнего задания

Разбираются задания, вызвавшие затруднения у учащихся, в данном случае учитель может разобрать некоторые задания по своему усмотрению. Если вопросов нет, то проверяются ответы у наиболее сложных заданий.

Изучение нового материала

Графическое изображение функции дает весьма наглядное представление о поведении функции в целом. Нередко график оказывает существенную помощь при решении задачи. Поэтому важно уметь упрощать процедуру построения графиков, используя для этого различные преобразования.

Иногда график строится с помощью полного исследования функции, которое устанавливает область определения, промежутки убывания и возрастания, промежутки знакопостоянства, асимптоты и т.д. Но довольно часто при построении графиков функций можно избежать подобных исследований, используя ряд приемов, позволяющих путем некоторых преобразований получить график требуемой функции из графика какой-нибудь хорошо известной функции.

В качестве мотивирующей задачи для изучения нового материала учащимся предлагается выполнить задание: «Задан график функции

(
). Построить на этом же чертеже график функции
(
)».

Для выполнения задания учитель делит класс на группы.

В результате построений учащиеся замечают, чтобы построить график второй функции, необходимо поднять на 1(опустить на 4, поднять на 7) график первой функции.

Учитель обобщает данное свойство графиков: пусть требуется построить график функции

при
. Легко заметить, что ординаты этого графика для каждого значения
на
единиц больше соответствующих ординат графика функции
. Следовательно, график функции
при
можно получить параллельным переносом вдоль оси ординат графика функции
на
единиц вверх.