Смекни!
smekni.com

Изучение элементов теории множеств в начальном курсе обучения математике (стр. 7 из 11)

На 12 уроке формируется представление об объединении множеств, учащиеся знакомятся с основными свойствами этой операции (переместительным, сочетательным) и ее записью с помощью знака È. Задания по теме «Множества и его элементы» встречаются в учебнике в течение всего учебного года в упражнениях для закрепления, пройденного материала.

2.2 Выявления уровня сформированности у младших школьников знаний элементов теории множеств

Экспериментальное исследование было направлено на выявление сформированности знаний, умений и навыков младших школьников по теме «множества».

Базой для проведения констатирующего эксперимента была определена Никольская средняя школа №3. В эксперименте участвовали школьники 3 класса в количестве 15 человек. Обучение детей велось по программе «Школа 2000...».

Знания, умения и навыки выявлялись в процессе самостоятельной работы, целью которой было выявление знаний по теме: «Диаграмма Венна. Знаки Î и Ï».

Школьникам были предложены следующие задания:

1. А - множество однозначных нечётных чисел. Поставь знак Î или Ï:

8…….А 3…….А 21…...А 5……..А

На диаграмме множества В отметь элементы а, с, р, 4, ∆, 15, если

известно, что:

а Î В р Î В ∆ Ï В

с Ï В 4 Ï В 15Ï В

В

Рисунок 2

3. Выполни деление с остатком и сделай проверку,

32:5= _____________________ 90:7=______________________

4. В рулоне 50 м ткани. От него отрезали кусок на 4 костюма по 3 м в каждом. Сколько метров ткани осталось?

Пользуясь диаграммой множеств С и D, поставь знак Î или Ï;

Рисунок 3


7___С m___C A___C Д___C

7___D m___D A___D Д___D

Нами были выделены критерии и уровни сформированности выполнения заданий самостоятельной работы:

Высокий уровень выполнения заданий характеризовался правильностью выполнения задания; осознанностью выбора правильного варианта; обобщенностью знаний, то есть был способен перенести прием выполнения заданий на новые случаи; автоматизмом (ученик выполнял задание быстро); прочностью (сохранение навыков выполнения заданий на длительное время).

Для среднего уровня выполнения заданий самостоятельной работы характерно небольшое количество ошибок; ученик осознает на основе каких знаний сделано задание, однако не может самостоятельно объяснить, почему сделал именно так» а не иначе; ученик может правильно выполнить задание только в стандартных условиях; ученик не всегда выполняет задания быстро; навыки правильного выполнения заданий сохраняются на короткий срок.

Для низкого уровня выполнения заданий самостоятельной работы свойственно ученик неправильно выполняет то или иное задание, не осознавая правильность его выполнения; медленное выполнение заданий; отсутствие сформированности навыков выполнения заданий.

Результаты выполнения заданий представлены в таблице №1.

Таблица №1 - Уровень усвоения знаний по теме «Диаграмма Венна. Знаки Î и Ï»

Ф. И. Задания см. работы Оценка Уровень
1 2 3 4 5
1 А. Виталий + - + - - 4 средний
2 Б. Екатерина + - + + - 4 средний
3 Б. Александр + + + + + 5 высокий
4 Д. Андрей + + + + + 5 высокий
5 З. Наталья + + + - - 4 средний
6 К. Николай + + + + + 5 высокий
7 К. Максим + + + + - 5 высокий
8 Л. Екатерина + - + + - 5 высокий
9 М. Андрей + - + + - 5 высокий
10 М. Елена + - + + + 5 высокий
11 Н. Евгений + + + + - 4 средний
12 О. Елена + + + - - 4 средний
13 П. Александр - + - + - 3 низкий
14 П. Анна - + + + - 3 низкий
15 У. Мария + + + + - 4 средний
ИТОГО 13 10 14 12 4

Опираясь на данные таблицы 1 можно сделать вывод о том, что самым сложным заданием оказалось задание 2, в котором необходимо на диаграмме множества В отметить элементы а, с, р, 4, ∆, 15, если известно, что: аÎВ, рÎВ, ∆ÏВ, сÏВ, 4ÏВ, 15ÏВ. Данное задание сделали правильно 50% школьников.

Первое задание, в котором требовалось поставить знак Î или Ï. Данное задание выполнили правильно 86,6% школьников.

В процессе анализа самостоятельной работы высокий уровень знаний по теме «Диаграмма Венна» был выявлен у 46% школьников, средний уровень у 40% детей, а низкий уровень у 14% школьников.

Таким образом, учащиеся обучающиеся по программе «Школа 2000…» имеют уровень знаний о множествах выше среднего и могут осознанно выполнять задания самостоятельной работы.

2.3 Методические рекомендации по изучению элементов теории множеств в начальном курсе математике

Знакомство с множествами и операциями над ними имеет важное значение для дальнейшего изучения многих вопросов школьной программы по математике и вместе с тем способствует интенсивному развитию мыслительных операций и речи учащихся: дети постоянно должны сравнивать объекты, выявлять в них сходства и различия, классифицировать, строить обобщения, выражать в речи и обосновывать наблюдаемые свойства и отношения.

Изучение множеств подготовлено изучением в 1 классе свойств совокупностей предметов и действий с ними. Этот материал здесь как бы повторяется на новом, более высоком уровне.

В науке и повседневной жизни часто приходится рассматривать совокупности некоторых объектов как единое целое: армия, флот, бригада, класс, род и вид животных, коллекция и т.д. Для математического описания таких совокупностей и было введено понятие множества. Можно говорить о множестве книг в библиотеке, множестве зрителей в кинотеатре, множестве точек прямой, множестве кругов на плоскости, множестве решений уравнения, множестве хищных животных, множестве парнокопытных, ластоногих и т.д. Таким образом, термин «множество», в отличие от всех других слов, выражающих идею объединения объектов (сервиз, табун, эскадра, стая, команда, батальон и т.д.), может применяться к объектам любой природы, объекты, собранные в множество, называют элементами множества.

В качестве методических рекомендаций представляем разработку урока математики в 3 классе по теме «Множества». Основная цель данных разработок: представить, опираясь на опыт практического преподавания в начальной школе, возможную структуру урока и условия его организации, позволяющей реализовать технологию деятельного метода. Обучение ведется с учетом возрастных особенностей младшего школьного возраста.

Урок 1

Тема урока: Множество и его элементы.

Цель урока: познакомить с понятием «множество» и его элементами.

Задачи урока:

-учить находить элементы определенных множеств в повседневной жизни;

-повторить приемы решения задач, уравнений, название компонентов Действий сложения и вычитания;

-формировать вычислительные навыки при решении выражений на порядок действий.

Ход урока

1. Организационный момент

О математика, гордись собой!

Ты всем наукам мать родная,

И дорожат они тобой.

В веках овеяна ты славой,

Светило всех земных светил.

Тебя царицей величавой

Недаром Гаусс окрестил.

Строга, логична, величава,

Стройна в полете, как стрела,

Твоя немеркнущая слава

В веках бессмертье обрела.

- Мы с вами открываем новый учебник, который поможет нам продолжить путешествие по стране Математика. Нас ждут новые открытия, увлекательные задания, сложные задачи, равенства и неравенства, множества, действия над многозначными числами.

- Какое новое понятие вам встретилось? (Множества?)

- Давайте вместе подумаем над тем, что же такое множество.

2. Постановка цели урока

- Сколько цифр вы знаете? Назовите их.

- А сколько чисел можно составить из этих цифр? (Очень много, множество.)

- А сколько чисел мы сможем назвать хором за одну минуту, начиная с единицы?

Дети называют числа, учитель засекает время.

- А можем мы перечислить все числа за урок? (Нет, их очень много.)

- Вместо слов «очень много» какое одно слово можно сказать? (множество).

- Множество - это тема нашего урока.

3. Знакомство с новым материалом

В толковом словаре русского языка СИ. Ожегова и Н.Ю. Шведовой дается следующее определение слова «множество»:

1) Очень большое количество, число чего-нибудь, например, людей.

2) В математике совокупность элементов, объединенных по какому-нибудь признаку.

- Какие бы вы привели примеры множеств, встречающихся в жизни? А в математике?

- По какому признаку объединены предметы в вашем множестве?

Упражнение №1

Придумай название для предметов и животных, собранных вместе.

Знакомство с определением данным автором в учебнике.

Что объединяет множество, о котором можно сказать «хор»? (множество людей (птиц)поющих вместе.)

- Каждого певца этого хора мы представляем как элемент этого множества.

- Назовите элементы остальных множеств.

Знакомство с понятием «элементы множества» в учебнике.

Предметы или живые существа входящие в множество, называют элементами этого множества.

- Элементы какого множества я называю: дубы, березы, ели, осины. (Множество деревьев). Песок, глина, мел, уголь, торф (Множество полезных ископаемых.) Машины, самолеты, велосипеды, (Множество техники.)