Смекни!
smekni.com

Формирование вычислительных навыков на уроках математики в начальной школе (стр. 4 из 7)

2 + 1, 2 + 2.

Необходимо обращать внимание учеников на то, что в одном и в другом примере стоит знак «+», а первые слагаемые одинаковы. Эти примеры схожи. Затем выявляются различия: в первом примере второе слагаемое равно 1, во втором 2, сумма в первом примере равна 3, а во втором – 4.

Ребята отмечают, что во втором примере прибавляем большее (2 > 1), поэтому и получаем большую сумму.

Переходя к сравнению выражений подбираем такие выражения, в которых ученики смогут усмотреть различные признаки различия и сходства.

Задание 2. На доске записаны примеры:

5 + 3, 4 + 3, 8 – 3, 6 + 3, 7 – 3, 9 – 3

Угадайте сходство или различие записанных выражений. Ученики обычно указывают такие признаки сходства, как знак действия, затем обращают внимание на то, что в первой группе прибавляется число 3, а во второй – вычитается число 3. Затем целесообразно поставить вопрос: «Что произойдет с ответами примеров в первой группе и во второй? Почему ответы в первой группе больше, чем ответы во второй?»

Очень полезно задание и такое:

Задание 3. Что вы замечаете в данных примерах?

1 + 1, 2 + 1, 3 + 1, 4 + 1, 6 + 1, 7 + 1

Ученики должны обратить внимание не только на тот факт, что во всех примерах знак «+» и второе слагаемое везде равно 1, но и на то, что последовательность 1, 2, 3, 4 … нарушена, т.к. пропущен пример 5 + 1.

Подобные задания способствуют развитию математической наблюдательности учеников, их умению видеть сходства и различия, выявлять определенные закономерности. В процессе выполнения таких заданий уясняется смысл понятия «сравнить».

Так же могут предлагаться задания с ошибками, которые требуют исправления:Задание 4. Найди ошибку:
Могут предлагаться задания, у которых уже дан знак отношения и одно из выражений, а другое выражение надо составить или дополнить: 8 · (10 + 2)=8 · 10 + …Выражения таких заданий могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями. Главная роль таких заданий – способствовать усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, о неравенствах и др. Также они помогают выработке вычислительных навыков.

2. Задания на классификацию и систематизацию знаний.

Умение выделять признаки предметов и устанавливать между ними сходство и различие - основа заданий на классификацию. Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия:

1) ни одно из подмножеств не пусто;

2) подмножества попарно не пересекаются;

3) объединение всех подмножеств составляет данное множество.

Предлагая детям задания на классификацию, эти условия необходимо учитывать.

Задание 1. Найди значения разностей

742 - 531 898 - 769

374 - 223 586 - 218

457 -132 465 -427

По какому признаку распределены разности по этим столбикам?

3. Задания на выявление общего и различного.

Выделение существенных признаков математических объектов, их свойств и отношений - основная характеристика таких заданий. Благодаря им учащиеся могут самостоятельно «открывать» математические свойства и способы действий (правила), которые в математике строго доказываются.

Задание 1. Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.

Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить полученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Вывод: «Если множители переставить, то произведение не изменится» или «От перестановки множителей значение произведения не изменится».

4. Задания с многовариантными решениями.

Многовариантные задания - это система упражнений, выполнение которых поможет глубоко и осознано усвоить правило и выработать необходимый вычислительный навык на его основе.

Задание 1. Запиши число 30 тремя одинаковыми цифрами и знаками действий.

Постарайся найти несколько разных решений.

Задание 2. Какое число надо прибавить к 25, чтобы получить круглое?

5. Задания с элементами занимательности.

Такие задания, в основном, направлены на отработку вычислительных навыков. Элемент занимательности увлекает детей, они стремятся выполнить все действия правильно и посмотреть к чему это приведет.

"Магические или занимательные квадраты" - это занимательная форма тренировки в сложении вычитания и размещения чисел. Решение магических квадратов увлекает школьников всех возрастов.

6. Задания на нахождение значений математических выражений.

Предлагается в той или иной форме математическое выражение, требуется найти его значение. Эти задания имеют много вариантов. Можно предлагать числовые математические выражения и буквенные (выражение с переменной), при этом буквам придают числовые значения и находят числовое значение полученного выражения, например:

- найдите разность чисел 100 и 9.- найдите значение выражения С – К, если С = 100, К = 9.Выражения могут предлагаться в разной словесной форме:- из 100 – 9; 100 минус 9- уменьшаемое 100, вычитаемое 9, найдите разность- найти разность чисел 100 и 9- уменьшить 100 на 9 и т.д.Эти формулировки использует не только учитель, но и ученики.Выражения могут быть даны с ошибками, которые детям предстоит найти: Задание 1. Найди ошибки в выражениях:
Выражения могут включать одно и более действий. Выражения с несколькими действиями могут включать действия одной ступени или разных ступеней, например: 47 + 24 – 56 72 : 12 · 9 400 – 7 · 4 и др.Могут быть со скобками или без скобок: (90 – 42) : 3, 90 – 42 : 3. Как и выражения в одно действие, выражения в несколько действий имеют разную словесную формулировку, например:- из 90 вычесть частное чисел 42 и 3- уменьшаемое 90, а вычитаемое выражено частным чисел 42 и 3.Выражения могут быть заданы в разной области чисел: с однозначными числами (7 – 4), с двузначными (70 – 40, 72 – 48), с трехзначными (700 – 400, 720 – 480) и т.д., с натуральными числами и величинами (200 – 15, 2м – 15см). Однако, как правило, приёмы устных вычислений должны сводиться к действиям над числами в пределах 100. Так, случай вычитания четырехзначных чисел 7200 – 4800 сводится к вычитанию двузначных чисел (72сотни – 48сотен) и значит его можно предлагать для устных вычислений. Выражения можно давать и в форме таблицы: Задание 2. Заполни таблицы:
Уменьшаемое 12 14 15 17 28
Вычитаемое 10 10 10 10 10
Разность
Так же такие задания могут быть представлены в виде раз личных «цепочек»:Задание 3: Реши цепочки:
Основное значение заданий на нахождение значений выражений – выработать у учащихся твердые вычислительные навыки, а также они способствуют усвоению вопросов теории арифметических действий.Могут предлагаться задания, у которых уже дан знак отношения и одно из выражений, а другое выражение надо составить или дополнить: 8 · (10 + 2)=8 · 10 + …Выражения таких заданий могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями. Главная роль таких заданий – способствовать усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, о неравенствах и др. Также они помогают выработке вычислительных навыков.7. Комбинаторные задачи.

Комбинаторика - один из разделов современной математики.

Комбинаторные задачи служат средством развития мышления детей, воспитания у них умения применять полученные знания в различных ситуациях посредством выработки навыков и повторения пройденного. Умение выполнять разбиение множеств, составлять комбинации по определенным признакам и классифицировать лежит в основе разнообразных сфер человеческой деятельности.

Задание 1. При умножении двух однозначных чисел получилось число 16

Чему были равны множители?

Найди всевозможные решения.

Задание 2. На складе находилось 7 полных бочонков меда, 7 наполовину заполненных медом и 7 пустых бочонков. Как распределить все бочонки между тремя покупателями так, чтобы каждый получил одинаковое количество меда и бочонков. (мед не нужно перекладывать из одного бочонка в другой.)

Использование на уроках математики заданий различного типа возбуждает у детей интерес, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки.

Глава 2. Организация практической работы по формированию вычислительных навыков у учащихся 2 класса на уроках математики.

2.1. Изучение уровня сформированности вычислительных навыков у учащихся 2 класса.

Опытно-экспериментиальная работа проводилась в МОУ «Гимназия №13» г. Алексина, в 2 «А» классе. В ней принимали участие 17 человек.

Цель констатирующего этапа – определить уровень сформированности вычислительных навыков у детей младшего школьного возраста.

Задачи этапа:

- определить критерии и показатели уровня сформированности вычислительных навыков у младших школьников;

- подобрать диагностический инструментарий;

- провести наблюдение за учащимися;

- провести анализ полученных данных.

Важным условием диагностики уровня сформированности вычислительных навыков является определение критериев сформированности навыков и их показателей.

Для нашей работы в качестве таких критериев мы взяли объем (количество) и качество. Рассмотрим эти критерии и их показатели.