Смекни!
smekni.com

Развитие математических способностей учащихся в основной школе (стр. 7 из 12)

Выводы.

Процесс развития математических способностей учащихся требует от учителя большого профессионализма. Для обеспечения эффективности своей деятельности педагог должен владеть разнообразными методами обучения, использовать в своей работе многочисленные приёмы и средства обучения. Его деятельность должна быть направлена на развитие самостоятельности и творческого потенциала в учениках. Поэтому для успешного осуществления своей деятельности учитель нуждается в разнообразных методических пособиях и рекомендациях, в обмене педагогическим опытом с другими учителями. В следующем разделе будут рассмотрены конкретные рекомендации по организации процесса развития математических способностей на уроке и внеклассных занятиях.

Раздел 2. Частная методика.

2.2.1. Развитие математических способностей на уроках математики.

В подавляющем большинстве учебников и ди­дактических пособий для средней школы практи­чески отсутствуют задачи, которые способствовали бы подготовке учеников к деятельности творческо­го характера и формирова­нию у них соответствующих математических способностей. Математические знания учащихся слишком часто оказываются формальными и невостребован­ными, у основной массы учащихся не формирует­ся разумный подход к поиску способа решения незнакомых задач.

Поэтому на уроках математики необходимо более активно заниматься развитием навыков в применении общих форм математической деятельности, таких, как:

· использование известных алгоритмов, формул, процедур;

· кодирование, преобразование, интерпретация:

· классификация и систематизация;

· правдоподобные рассуждения;

· выдвижение и проверка гипотез, доказатель­ство и опровержение;

· разработка алгоритмов.

В данном разделе будут рассмотрены задачи раз­ного уровня сложности, решение которых способ­ствует развитию у учащихся навыков в использова­нии некоторых из выделенных выше общих форм математической деятельности.

1. Использование известных алгоритмов, формул, процедур.

К сожалению, в преподавании математики в рос­сийской школе по-прежнему доминирует формаль­ный подход, связанный с отработкой конкретных методов решений. Существует такой тезис: «Если уча­щемуся предлагают упражнения только одного типа, выполнение каждого из них сводится к одной и той же операции, если эту операцию не при­ходится выбирать среди сходных и условия, дан­ные в упражнении, не являются для учащегося не­привычными и он уверен в безошибочности своих действий, то учащийся перестает задумываться об их обоснованности». Этот тезис можно подкрепить описанием следующей пси­холого-дидактической закономерности:последовательность рассуждений (А, В, С ..... М), повторяющаяся при решении однотипных задач, может свертываться до со­ставной ассоциации (А, М). Однако обратный процесс — развертывание — происходит без по­терь не у всех учащихся.

Этот эффект хорошо известен составителям ва­риантов вступительных экзаменов в высшие учеб­ные заведения: какова бы ни была по сути проста задача, но если ее решение предполагает использо­вание двух различных (хотя бы и известных) алго­ритмов или же если в нем должно содержаться некоторое исследование (к примеру, по парамет­ру), то массовые ошибки неизбежны. Более того, ошибки часто появляются и в том случае, если ал­горитм используется в ситуации, в которой он не­применим.

Задача 1.1. Решите систему

Решение этой задачи, как нетрудно видеть, сво­дится к цепочке простых логических рассуждений и использованию стандартных формул. Однако для того, чтобы получить правильный ответ, эти стан­дартные формулы следует правильно использовать. Не приводя ответ полностью, выпишем одну из четырех серий решений

(1)

К сожалению, слишком многие учащиеся бездум­но отождествляют параметры k и n и вместо се­рии (1) пишут, что

упуская тем самым, условно говоря, большую часть решений этой серии.

Задача 1.2. Некоторое число умножили на 3, а затем к полученному произведению прибавили 2. Верно ли, что полученное число больше исходного?

Ясно, что За + 2 > а только при а > - 1, но какой процент, к примеру, семиклассников сразу даст верный ответ?

Реакция учащихся на последнюю из проводимых в этом разделе задач продемонстрирует степень их понимания стандартной схемы решения иррацио­нальных уравнений.

Задача 1.3. Решите уравнение

Большая часть учеников начнет решение с нахождения ОДЗ и раскрытия модуля. А между тем можно сразу перейти к урав­нению

Целесообразно задать учащимся такой вопрос: «Как вам кажется, какое уравнение проще решить, дан­ное выше или уравнение

?».

2. Кодирование, преобразование, интерпретация.

Простейшим примером использования указан­ных форм деятельности является их внутриматематическое применение, к примеру, замена перемен­ной, перевод задачи с одного математического язы­ка на другой (от алгебры к геометрии и обратно).

Кодирование или переформулирование способст­вует выявлению скрытых свойств объектов (суще­ственных для данной задачи) путем включения их в другую систему связей. Использование разнооб­разных формулировок задачи способствует ее по­ниманию. Культура мышления предполагает раз­витое умение думать об одном и том же на разных языках.

Нужно уметь создавать и пользоваться различ­ными моделями. А потому важно научить школь­ников формализовывать задачи и переводить усло­вия и результаты с одного языка на другой, т.е. кодировать информацию, понимать смысл (т.е. интерпретировать) полученных в результате иссле­дования результатов. Многие школьные задачи со­держат в себе элементы кодирования, преобразо­вания, интерпретации (к примеру, практически все текстовые задачи, но далеко не только они). При­ведем примеры.

Задача 2.1. Докажите, что если от произвольного двузначного числа отнять двузначное число, записан­ное теми же цифрами в обратном порядке, то полу­чится число кратное девяти.

Самая первая кодировка, с которой знакомятся школьники в процессе обучения математике, — это десятичная (позиционная) запись натуральных чи­сел. Если

исходное число, то
,а число, «записанное теми же цифрами в обратном порядке», равно
, поэтому их разность
кратна девяти.

Задача 2.2. Вычислите

Это число равно двум! Действительно, если положить

, то получим выражение (а + 1)(а + 2) - а(а + 3) = а2 +3а + 2 - а2 - За = 2вне зависимости от значения переменной а.

Конечно, тот же результат может быть получен, если записать каждую из входящих в данное выра­жение дробей в виде

и раскрыть скобки. При таком способе решения еще придется увидеть (не используя калькулятор), что 1997∙1998 -1996 ∙1999 = 2.

Самое время сказать несколько слов о роли каль­куляторов в обучении математике. Если он имеет­ся у каждого учащегося в классе, то бессмысленно предлагать подобную единичную задачу; ясно, что ее математическое содержание останется нераскрытым. Необходимо дать несколько примеров, в каж­дом из которых ответ - 2, с тем, чтобы затем «раз­гадать загадку».

Задача 2.3. Проверьте, что

(2)

и найдите еще несколько подобных примеров.

Проверить это равенство легко, труднее найти аналогичные. Конечно, кто-то может сразу дога­даться, что 8 = 32 - 1, и написать равенство

(3)

справедливость которого тоже очевидна. Однако, как и в предыдущем примере, основная идея - это введение замен (подстановок). Запишем равенство

Его частными случаями являются равенства (2) и (3). В результате мы построили своего рода мо­дель. Все что осталось сделать, — это исследовать ее, т.е. найти соотношение между а и b,при выполнении которого справедливо наше обобщен­ное равенство. А для этого надо провести простые преобразования:

, или
, откуда
.

3. Классификация и систематизация

Классификация — общепознавательный прием, суть которого заключается в разбиении данного множества объектов на попарно непересекающие­ся подмножества (классы) в соответствии с так называемым основанием классификации, т.е. при­знаком, существенным для рассматриваемых объ­ектов. Систематизация - это объединение объек­тов или знаний о них путем выявления существен­ных связей между ними, установление порядка между частями целого на основе определенного закона, правила или принципа.