В таких случаях прибегают к использованию непараметрических критериев различия.
При выборе параметрических или непараметрических критериев следует иметь в виду, что наибольшей статистической мощностью (большей чувствительностью, лучшей разрешающей способностью) отличаются параметрические критерии (Г.Ф. Лакин, 1973). Поэтому в тех случаях, когда имеется вариационный ряд количественных показателей без явных признаков асимметричности, следует начинать обработку с помощью параметрических критериев. Если она даст результаты, далекие от граничных значений критерия, можно ими удовлетвориться; если же результаты окажутся на пределе значений достоверности, следует проверить, имеется ли достоверность различия, с помощью непараметрических критериев (не случайно их называют еще "вспомогательными критериями"). Подобное дублирование обработки никогда не окажется лишним, ибо затраты времени, кстати не столь уж значительные, окупятся большей достоверностью выводов.
Свое название непараметрические критерии получили потому, что не нуждаются в вычислении параметров, характеризующих те или иные выборки (среднего арифметического, среднего квадратического и т.п.). В связи с тем, что непараметрические критерии приложимы не только к вариантам с числовым выражением, но и к вариантам порядкового характера, их называют еще порядковыми критериями.
Непараметрические критерии в отличие от параметрических имеют простую конструкцию, не требуют большой вычислительной работы, могут оценивать вариационные; ряды порядкового характера любой формы распределения. Кроме того, они позволяют оценивать сравнительно небольшие выборки (кстати, даже таблицы значения критерия составлены на число вариант менее 30), что опять-таки чрезвычайно важно для педагогических исследований.
Существует несколько непараметрических критериев, в зависимости от конструкции и статистической мощности. Каждый из них специфичен в решении тех или иных задач исследования. Наиболее распространенными в педагогических и биологических исследованиях являются критерий Уайта и критерий Вилкоксона.
Критерий Уайта. Условное обозначение этого критерия - Т. Он способен выявить различия между двумя совокупностями по их ведущим тенденциям, однако не оценивая степени колебания вариант. Поэтому две выборки с равно выраженными тенденциями, но с разными пределами колебаний будут квалифицированы критерием Уайта как одинаковые.
Критерий Уайта применим при сравнении одинаковых и разных по объему выборок.
Очередность числовых операций показана на примере исследования, задача которого определение эффективности методов разучивания двигательного действия по частям и в целом.
Полученные значения (в данном примере баллы, при разучивании по частям - Vr - 8,0; 8,6; 8,5; 9,0; 9,6; 9,5; при разучивании в целом - VЦ - 8,1; 8,0; 8,2; 8,3; 8,7; 8,6; 9,4) в обеих выборках расположить в общий ряд в соответствии с их рангами в возрастающем порядке.
Чтобы облегчить последующие цифровые операции,, целесообразно построить ступенчатые ряды показателей и их рангов (R): в верхнем ступенчатом ряду расположить полученные в исследовании показатели в возрастающем порядке, а в нижнем - их ранги:
vЧvЦ | 8,08,5 8,69,09,5 9,6 -МЧ = 8,878,0 8,1 8,2 8,38,6 8,79,4 -МЦ = 8,47 |
RЧRЦ | 1,56 7 51012 13 - ТЧ = 501,5 3 4 5 7,5 911- ТЦ = 41 |
Как видно, ступенчатый ряд показателей начинается с наименьшего показателя для обеих выборок, а затем перечисляются все остальные, причем на верхней "ступеньке" для одной выборки, а на нижней - для другой. Если в двух выборках встречаются равные показатели, то безразлично, какой из них будет стоять первым, а какой - вторым (из верхней половины ряда или из нижней), так как в этом случае ранг вычисляется путем деления суммы рангов, имеющих одинаковые значения показателей, на число таких одинаковых показателей. В данном примере показатели 8,0 и 8,0 занимают первое и второе места в общем, ступенчатом ряду и имеют одинаковый средний ранг 1.5
Создается впечатление, что оценки Vrпредпочтительнее, да и средняя арифметическая величина Мrвыше, чем Мц. На самом ли деле оценки Vrвыше, а следовательно, и метод разучивания по частям в данных условиях эффективнее, чем метод разучивания в целом, покажут следующие расчеты.
Вычислить суммы рангов Тrи Tц для рядов Rrи Rц. В данном примере: Тr = 50, Tц = 41.
Проверить правильность вычисления суммы рангов рядов, для чего вычислить ее двумя способами:
а) Тч+ Tц = 50 + 41 = 91;
б)
Подобная простая проверка чрезвычайно важна, так как от точности ранжирования зависит вывод о достоверности различия выборок.
Суммы рангов каждого ряда отличаются друг от друга на 9 единиц. Требуется определить, может ли эта разница считаться настолько значимой, чтобы говорить о большей эффективности одного из методов разучивания.
Для этого меньшую (обязательно меньшую!) сумму рангов (в данном случае 41) следует сравнить с табличным коэффициентом Т по таблице "Значения критерия Уайта". Если Т окажется больше меньшей суммы рангов, но не равной ей (Т >41), то имеющаяся разность между двумя выборками считается достоверной.
Значения критерия Уайта при Р = 0,95 (по Д. Сепетлиеву, 1968)
Большее число наблюдений | Меньшее число наблюдений | |||||||||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
4 | 11 | |||||||||||||
5 | 6 | 11 | 17 | |||||||||||
6 | 7 | 12 | 18 | 26 | ||||||||||
7 | 7 | 13 | 20 | 27 | 36 | |||||||||
8 | 3 | 8 | 14 | 21 | 29 | 38 | 49 | |||||||
9 | 3 | 8 | 15 | 22 | 31 | 40 | 51 | 63 | ||||||
10 | 3 | 9 | 15 | 23 | 32 | 42 | 53 | 65 | 78 | |||||
И | 4 | 9 | 16 | 24 | 34 | 44 | 55 | 68 | 81 | 96 | ||||
12 | 4 | 10 | 17 | 26 | 35 | 46 | 58 | 71 | 85 | 99 | 115 | |||
13 | 4 | 10 | 18 | 27 | 37 | 48 | 60 | 73 | 88 | 103 | 119 | 137 | ||
14 | 4 | И | 19 | 28 | 38 | 50 | 63 | 76 | 91 | 106 | 123 | 141 | 160 | |
15 | 4 | 11 | 20 | 29 | 40 | 52 | 65 | 79 | 94 | ПО | 127 | 145 | 164 | 185 |
16 | 4 | 12 | 21 | 31 | 42 | 54 | 67 | 82 | 97 | 114 | 131 | 150 | 169 | |
17 | 5 | 12 | 21 | 32 | 43 | 56 | 70 | 84 | 100 | 117 | 135 | 154 | ||
18 | 5 | 13 | 22 | 33 | 45 | 58 | 72 | 87 | 103 | 121 | 139 | |||
19 | 5 | 13 | 23 | 34 | 46 | 60 | 74 | 90 | 107 | 124 | ||||
20 | 5 | 14 | 24 | 35 | 48 | 62 | 77 | 93 | НО | |||||
21 | 6 | 14 | 25 | 37 | 50 | 64 | 79 | 95 | ||||||
22 | 6 | 15 | 26 | 38 | 51 | 66 | 82 | |||||||
23 | 6 | 15 | 27 | 39 | 53 | 68 | ||||||||
24 | 6 | 16 | 28 | 40 | 55 | |||||||||
25 | 6 | 16 | 28 | 42 | ||||||||||
26 | 7 | 17 | 29 | |||||||||||
27 | 7 | 17 |
Определить коэффициент Т. Он определяется по числу вариант в каждом ряду. В данном примере nч = 6, пц = 7; для данных объемов выборов табличный коэффициент Т = 27 при пороге доверительной вероятности Р = 0,95.
Сравнить табличный коэффициент Т = 27 с меньшей суммой рангов: Т = 27<41.
Сделать вывод. В данном примере: сравниваемые методы разучивания при данных условиях (виде разучиваемого двигательного действия, уровне подготовленности занимающихся квалификации преподавателя и т.п.) в принципе обладают одинаковой эффективностью. Более высокие оценки при методе разучивания по частям могут быть следствием каких-либо спонтанных факторов.
О некоторых частных вариантах использования критерия Уайта можно прочитать в книге В.Ю. Урбаха "Математическая статистика для биологов и медиков" (М., изд. АН СССР, 1963, стр.275 - 276).
Если полученное значение различия окажется очень близким к граничному значению табличного коэффициента, а следовательно, вызовет сомнение, то необходимо использовать более мощный, хотя и более громоздкий, критерий ван дер Вардена (он описывается во многих пособиях, в том числе и в названной книге В.Ю. Урбаха, стр.276 - 279).
Критерий Вликоксона. Условное обозначение этого критерия - Z. Он применяется в тех случаях, когда необходимо сравнить различия между парными вариантами, составляющими две выборки. Парных вариант должно быть не менее 6. Из критериев, с помощью которых можно решить подобные задачи, критерий Вилкоксона является наиболее статистически мощным, а по конструкции сравнительно простым. Именно поэтому он имеет наибольшее распространение.
Методика вычисления показана на примере лабораторного исследования, проведенного с целью установления сравнительной эффективности комплексов физических упражнений с волевым напряжением мышц. Одним из показателей, по которому оценивалась эффективность комплекса, являлось изменение силы мышц руки при сжатии динамометра. Было подобрано 9 идентичных; пар занимающихся, каждая из которых имела одинаковый исходный уровень динамометрии.
В каждой паре один занимающийся применял комплекс упражнений с волевым напряжением мышц ("силовой комплекс"), а второй - тот же самый комплекс упражнений, но без волевого напряжения мышц ("обычный комплекс").