Смекни!
smekni.com

Методические основы уровневой дифференциации при обучении алгебре в классах с углубленным изучен (стр. 10 из 16)

2. При каком значении «а» один из корней уравнения

3. Выразите зависимость между коэффициентами уравнения

4. Составьте такое уравнение, чтобы сразу было видно, что оно имеет три корня 0; 2; 5.( Ответ:

Фронтальную работу можно использовать так же при текущем контроле знаний и умений учащихся. Например, в форме математического диктанта, при чем задания можно давать повариантно: первый вариант доказывает свойство умножения степеней с одинаковыми основаниями, второй – свойство возведения степени в степень; в качестве второго задания даются не сложные примеры на вычисление и т.п.

2.2 Групповая работа.

Для того, чтобы обучение проявляло развивающий эффект, необходимо соблюдать универсальное условие: развиваемый субъект должен быть включен в активную деятельность и общение. Это условие вытекает из того, что ученик в учебном процессе не только объект, но и субъект процесса собственного учения.

Формирование творческой активности – высшая цель активизации, но нельзя игнорировать более низкие ее ступени. К содержательной стороне активизации относятся составление и предъявление заданий, активизирующих учебно-познавательный процесс. Другой ее стороной является организация активизированной учебной работы.

Групповая работа – одна из форм активизации учащихся. По определению Х.И.Лийметса под групповой работой понимают такое построение работы, при которой класс делится на группы по 3-8 человек (чаще по четыре человека) с целью выполнения той или иной учебной задачи.

Групповая работа так же представляет много возможностей для индивидуализации, особенно, если группы составлены из схожих по какому-либо признаку учащихся, причем тогда для каждой группы подбираются специальные задания.

В малой группе учащийся находится в более благоприятных условиях, чем при фронтальной работе. Группы могут быть сформированы как учителем (на основании уровня знаний и/или умственных способностей), так и по пожеланию учащихся.

Групповая работа достаточно эффективна, однако следует следить за тем, чтобы более сильные и старательные не заглушали инициативу более слабых и пассивных. Целесообразно проводить работу также с относительно стабильными группами, что позволяет оперативно распределять задания различной степени сложности, причем по результатам обучения возможен переход из одной группы в другую.

И так групповая учебная деятельность – это организованная система активности взаимодействующих учащихся, направленная на целенаправленное решение поставленной учебной задачи.

Основными показателями являются отношение учашихся к совместному действию. Это отношение выявляется

1) по характеру деятельности группы при выполнении задания;

2) по используемым средствам фиксации совместного действия (моделирование, выработка способа, формулировка выводов и т.д.)

3) по характеру общения членов группы.

При учебной кооперации учащиеся выполняют общую работу, осуществляя обмен операциями и мнениями. В это процессе наступают понимание каждым участником своей зависимости от действий другого и ответственности.

Рассмотрим систему задач разной тематики для возможного решения в группах. Задачи подобраны по следующему принципу: по каждой теме предлагается по две задачи, причем одно из них является более сложной в смысле выявления способа решения или выделения основных отношений и связей и требует творческого подхода к решению.

1. Упростить выражение

Решение.

Тактически нецелесообразно складывать сразу все дроби.

Сложим первые две:

Прибавим третью:

Затем четвертую :

и пятую:

Можно предложить и другой способ решения.

Легко проверить, что

причем аналогичные равенства справедливы и для других дробей. Заменив каждую дробь. Входящую в выражение на соответствующую разность получим:

Ответ:

.

2. Докажем равенство

Решение.

Преобразуем левую часть данного равенства:

Поменяв местами множители, получим выражение, стоящее в правой части.

3.Решить уравнение.

Решение.

Вместо стандартного освобождения от знаменателя, приведения подобных слагаемых и решение полученного квадратного уравнения, объединим дроби в пары и произведем действия внутри пар:

Ответ:

4. Решить уравнение:

.

Решение.

Замена

, тогда
, а
. Подставляем полученные выражения в исходное уравнение, имеем:

;
;
.

не удовлетворяет условию
.

Возвращаемся к

:

;
.

Ответ:

5. Решить систему уравнений:

Решение.

Выразим

, из второго уравнения
:

и подставляем в первое и третье уравнения системы:

Выразив

через
и подставив во второе уравнение, получим:

Ответ:

,
.

5. Решить систему уравнений:

Решение.

Предложенная система является симметричной: замена

на
, а
на
не меняет каждого из уравнений системы.

Используем замену переменных:

.

Поскольку

, относительно
и
получим следующую систему:

Для

и
соответственно будем иметь две системы:

Вторая система не имеет действительных корней, первая имеет два решения: (1;2); (2;1).

Ответ: (1;2); (2;1).

7. Решить неравенство:

Решение.

Ответ:

.

8. Решить неравенство: