2. При каком значении «а» один из корней уравнения
3. Выразите зависимость между коэффициентами уравнения
4. Составьте такое уравнение, чтобы сразу было видно, что оно имеет три корня 0; 2; 5.( Ответ:
Фронтальную работу можно использовать так же при текущем контроле знаний и умений учащихся. Например, в форме математического диктанта, при чем задания можно давать повариантно: первый вариант доказывает свойство умножения степеней с одинаковыми основаниями, второй – свойство возведения степени в степень; в качестве второго задания даются не сложные примеры на вычисление и т.п.
2.2 Групповая работа.
Для того, чтобы обучение проявляло развивающий эффект, необходимо соблюдать универсальное условие: развиваемый субъект должен быть включен в активную деятельность и общение. Это условие вытекает из того, что ученик в учебном процессе не только объект, но и субъект процесса собственного учения.
Формирование творческой активности – высшая цель активизации, но нельзя игнорировать более низкие ее ступени. К содержательной стороне активизации относятся составление и предъявление заданий, активизирующих учебно-познавательный процесс. Другой ее стороной является организация активизированной учебной работы.
Групповая работа – одна из форм активизации учащихся. По определению Х.И.Лийметса под групповой работой понимают такое построение работы, при которой класс делится на группы по 3-8 человек (чаще по четыре человека) с целью выполнения той или иной учебной задачи.
Групповая работа так же представляет много возможностей для индивидуализации, особенно, если группы составлены из схожих по какому-либо признаку учащихся, причем тогда для каждой группы подбираются специальные задания.
В малой группе учащийся находится в более благоприятных условиях, чем при фронтальной работе. Группы могут быть сформированы как учителем (на основании уровня знаний и/или умственных способностей), так и по пожеланию учащихся.
Групповая работа достаточно эффективна, однако следует следить за тем, чтобы более сильные и старательные не заглушали инициативу более слабых и пассивных. Целесообразно проводить работу также с относительно стабильными группами, что позволяет оперативно распределять задания различной степени сложности, причем по результатам обучения возможен переход из одной группы в другую.
И так групповая учебная деятельность – это организованная система активности взаимодействующих учащихся, направленная на целенаправленное решение поставленной учебной задачи.
Основными показателями являются отношение учашихся к совместному действию. Это отношение выявляется
1) по характеру деятельности группы при выполнении задания;
2) по используемым средствам фиксации совместного действия (моделирование, выработка способа, формулировка выводов и т.д.)
3) по характеру общения членов группы.
При учебной кооперации учащиеся выполняют общую работу, осуществляя обмен операциями и мнениями. В это процессе наступают понимание каждым участником своей зависимости от действий другого и ответственности.
Рассмотрим систему задач разной тематики для возможного решения в группах. Задачи подобраны по следующему принципу: по каждой теме предлагается по две задачи, причем одно из них является более сложной в смысле выявления способа решения или выделения основных отношений и связей и требует творческого подхода к решению.
1. Упростить выражение
Решение.
Тактически нецелесообразно складывать сразу все дроби.
Сложим первые две:
Прибавим третью:
Затем четвертую :
и пятую:Можно предложить и другой способ решения.
Легко проверить, что
причем аналогичные равенства справедливы и для других дробей. Заменив каждую дробь. Входящую в выражение на соответствующую разность получим:Ответ:
.2. Докажем равенство
Решение.
Преобразуем левую часть данного равенства:
Поменяв местами множители, получим выражение, стоящее в правой части.
3.Решить уравнение.
Решение.
Вместо стандартного освобождения от знаменателя, приведения подобных слагаемых и решение полученного квадратного уравнения, объединим дроби в пары и произведем действия внутри пар:
Ответ:
4. Решить уравнение:
.Решение.
Замена
, тогда , а . Подставляем полученные выражения в исходное уравнение, имеем: ; ; . не удовлетворяет условию .Возвращаемся к
: ; .Ответ:
5. Решить систему уравнений:
Решение.
Выразим
, из второго уравнения : и подставляем в первое и третье уравнения системы:Выразив
через и подставив во второе уравнение, получим:Ответ:
, .5. Решить систему уравнений:
Решение.
Предложенная система является симметричной: замена
на , а на не меняет каждого из уравнений системы.Используем замену переменных:
.Поскольку
, относительно и получим следующую систему:Для
и соответственно будем иметь две системы: Вторая система не имеет действительных корней, первая имеет два решения: (1;2); (2;1).Ответ: (1;2); (2;1).
7. Решить неравенство:
Решение.
Ответ:
.8. Решить неравенство: