5-й тип урока – урок формирования общего способа.
Цель урока – научить учащихся выделению учебных (умственных) действий и формулировать на их основе общие способы в процессе решения учебной задачи.
6-й тип урока – урок моделирования содержания материала или способов решения.
Цель урока – научить учащихся действиям моделирования усвоенного учебного материала в графической, знаковой, символической или другой форме.
Учебное моделирование – это процесс чистого творчества, великолепное средство познания и содержательного обобщения знаний и способов действий. Учебная модель является результатом творческого анализа научного понятия и условием формирования устойчивой мотивации учения.
Урок моделирования может проходить в двух формах: как процесс (фиксированный в наглядно-логической форме), как результативное средство (модель фиксирования в конце урока в результате специального задания).
7-й тип урока – урок самоконтроля.
Цель урока – научить учащихся осуществлять контроль над своими учебными действиями.
Самоконтроль – основное нравственное действие человека связанное с развитостью его волевой сферы. Самоконтроль осуществляется на основе личностно значимых мотивов и установок, что ведет к рациональной рефлексии и оценке учащимися своих собственных учебных действий. Самоконтроль учащихся предполагает сличение, анализ и коррекцию отношений между целями, средствами и результатами.
Различают следующие основные виды:
1) итоговый контроль (по результату);
2) процессуальный;
3) прогнозирующий;
8-й тип урока – урок самооценки.
Цель урока - научить учащихся осознавать степень усвоения учебного материала и адекватно оценивать свои знания.
Школьная самооценка - это оценка учеником самого себя, своих знаний, возможностей, качеств и занимаемого места среди одноклассников. Учебная самооценка является важным регулятором поведения школьника и относится к главному фактору формирования личности.
В самооценке необходимо выделять ее адекватность, надежность и полноту.
9-й тип урока – урок учебной деятельности (творческого развития).
Цель урока - научить детей работать в ситуации целостной учебной деятельности, где в свернутой, обобщенной, сокращенной форме одновременно присутствуют все типы уроков как структурные, естественные компоненты типичного (обычного) урока творческого развития.
Обычный, «классический» тип урока творческого развития в себя включает все «чистые типы» уроков.
10-й тип урока – урок усвоения групповых форм учебной деятельности.
Цель урока - научить учащихся работать в группах, знания добывать совместными усилиями.
2.1. Фронтальная работа.
Фронтальная работа может осуществляться в нескольких видах:
- подача нового материала;
- устные упражнения – как средство для повторения и моделирования проблемы;
- работа с классом.
Значение этого метода достаточно велико, но для повышения эффективности обучения необходимо комбинировать его с другими формами.
Задания для фронтальной работы могут быть направлены на активизацию
1) процесса памяти;
2) процесса логического мышления на базе имеющихся навыков и знаний;
3) творческой деятельности и поиска новых знаний.
Рассмотрим несколько примеров реализации дифференцированного подхода во фронтальной работе
Пример 1. Для примера выберем тему «Прогрессии»
Покажем план урока подачи нового материала в классах различного типа и уровня развития.
1. Класс сильный, думающий, увлеченный математикой.
Сама математика как предмет держат его внимание. Потому, с одной стороны, в таком классе легко работать, но с другой стороны, есть и сложности. Особенно если тема простая, а рассматриваемая нами тема «Прогрессии» не содержит сложного материала.
Если идти по пути построения урока, достойного развития детей, то можно начать изучение двух тем параллельно. Например, дается определение арифметической прогрессии, приводятся примеры, и тут же рядом записывается определение геометрической прогрессии, составленное по аналогии самими учащимися. Действительно, если есть арифметическая прогрессия, то, наверное, существует и геометрическая.
Затем встает вопрос о формуле любого числа. Здесь сами ребята догадаются о ее структуре и докажут справедливость. Учителю придется подсказать лишь каким методом это сделать. Уместен будет разговор о методе математической индукции, хотя в качестве информации.
Последними можно рассмотреть характеристические свойства.
При всем этом нельзя забывать, что даже этот круг учеников нуждается в отработке элементарных операций. Поэтому далее целесообразно включить устную работу (10-15 мин.), направленную на отработку специальных умений по этой теме. Затем решить по одной задаче на характеристическое свойство каждой из прогрессий.
Закончить урок можно решением таких задач:
Задача 1. Выписаны 2 арифметические прогрессии. Если из каждого члена первой прогрессии вычесть соответственно член второй прогрессии, то получится ли снова арифметическая прогрессия?
Решение:
Ответ: да.
Задача 2. Могут ли три последовательных члена арифметической прогрессии вместе с тем быть и тремя последовательными членами геометрической прогрессии? (прогрессии с неравными членами).
Решение: Пусть числа а, в, с, образуют арифметическую прогрессию и геометрическую одновременно, тогда:
Ответ: нет.
Задача 3. В двух трехчленных прогрессиях (арифметической и геометрической с положительными членами) одинаковы оба первых и оба последних члена. В какой из них сумма членов больше?
Ответ: в арифметической.
Однако вместо этих задач можно сделать экскурс в историю. Рассказать о том, что примеры отдельных арифметических и геометрических прогрессий можно встретить еще в древне-вавилонских и египетских надписях (500-400 лет до нашей эры), что в Древней Греции были известны такие суммы:
А знаменитая задача о награде за изобретение шахматы впервые встречается у хорезмского математика Аль-Бируни
Можно упомянуть и о бесконечных рядах и их применении. Впечатляет и способ вычисления суммы бесконечного ряда
2. Класс шумный, думающий, заинтересованный предметом, но с недостаточно развитой самостоятельностью действий.
В этом случае работа будет носить фронтально-индивидуальный характер. Учащиеся, отвечающие вышеизложенной характеристике, любят учиться, но испытывают тягу к получению быстрых результатов. Однако с большим интересом воспринимают информацию о самих себе: о своей памяти, внимании, работоспособности. Учитель должен завладеть вниманием учащихся и удержать его до конца урока. Класс с готовностью выполняет четкие указания учителя и этот момент надо непременно использовать. Но необходимо не трафаретное начало. Поэтому учащихся можно сразу озадачить вопросами: какие анализаторы человек использует при восприятии информации? Дальше можно сказать, что основными являются анализаторы запаха, вкуса, осязания, слуха. Для рационального восприятия необходимо знать свой доминирующий анализатор, обычно зрение или слух. Именно его следует использовать в первую очередь. Для выявления учеников предлагаются задания следующего типа. На доске записаны числа 6,8,10,12,14,16,18,20;-12; -9; -6; -3; 0; 3; 6; 9; 12.
Учащиеся после минутного рассмотрения должны воспроизвести запись в тетрадях, что удается не каждому. Далее им предлагается ряд равенств, для запоминания которых включается не только зрительная, но и логическая память:
Затем делается акцент на слуховую память: медленно читается определение, которое необходимо записать после прослушивания.
«Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом, называется арифметической прогрессией». После паузы читается определение еще раз и все проверяют запись.
После этого можно сделать общий вывод принципов рационального восприятия информации:
1. Постановка цели: что люди мыслят под этим понятием, хочу про него знать все.
2. Использование основного анализатора.
3. Интерес.
Далее дети читают в своем темпе параграф по теме.
Завершает урок ряд задач из учебника или подобранных учителем.
Пример 2. Устные упражнения.
Устные упражнения заслуживают особого внимания. Они эффективны кажущейся легкостью, эмоциональностью, действуют на учащихся мобилизующе, способствуют развитию внимания и памяти, но требуют от школьников большого умственного напряжения, поэтому могут быстро их утомить.
На ряду с чисто устными практикуются также полуустные (зрительно-слуховые), когда задания записаны на доске или проецируется на экран. Некоторые мы рассматривали в предыдущем примере, когда с их помощью вводился новый материал.
Устные упражнения успешно применяются и при повторении. Например, при подготовке к контрольной работе в 8 классе по теме «арифметический квадратный корень» можно предложить следующую систему устных упражнений:
- в начале урока:
1) Известно, что площадь квадрата составляет а2; 36; 900 кв.ед. Чему равна его сторона?
Запись на доске:
2) Сравнить значения выражений:
3) Упростить выражения:
4) Назвать область определения:
5) Решить уравнения (назвать его корни):
- после блока повторения – построение графиков:
1) указать ход построение графиков:
Приведем так же пример обобщающего повторения. В начале 9 класса необходимо восстановить в памяти учащихся все о квадратном трехчлене и квадратных уравнениях с помощью упражнений:
1. Указать общий вид квадратных уравнений, корни которых равны по величине, но противоположны по знаку: