Смекни!
smekni.com

Развитие критичности мышления с использованием математических софизмов (стр. 7 из 7)

Раскрытие софизма:

Здесь допущена ошибка при интегрировании синуса. При вычислении с помощью интегрирования площади фигуры, заключенной между осью Ох и некоторой кривой, необходимо учитывать, что площадь при этом получается со знаком «плюс» или «минус». Это означает, что если кривая расположена над осью Ох, то площадь имеет знак «плюс», а если под осью Ох – знак «минус».

Синус на отрезке [0;

] положителен, а на отрезке [
] . Отрицателен. Поэтому площадь фигуры, заключённой между синусоидой и осью Ох, на отрезке [0;
] равна
, а на отрезке [
] площадь равна
.

Тогда площадь

, на отрезке [0; 2
] будет равна
, а на отрезке [0; 2n] составит
.

Софизмы могут самые разные и приведённая система подтверждает, что софизмы могут быть использованы и в соответствии с тематикой обучения, т.е. можно подобрать софизм, который будет актуален при проведении урока по различным темам. Конечно, разумно использовать софизм после изучения конкретной темы, например в 7 классе после темы «Формулы сокращённого умножения», или в 10 классе при изучении темы «Логарифмы», т.к. решение некоторых софизмов можно свести к тем же логарифмам или решить его, используя формулы сокращённого умножения.


Заключение

Проработав соответствующую психолого-педагогическую и методическую литературу по данному вопросу, очевидно, сделать вывод о том, что критичность является важным качеством мышления, развитие которого требует значительных усилий со стороны учителя математики. Кроме того, полезно развивать критичность мышления, в процессе обучения, отступая от стандартных методов проведения урока.

Бесспорно, достичь поставленной цели с помощью только стандартных задач невозможно. Если учитель математики «заполнит отведённое ему время натаскиванием учащихся в шаблонных упражнениях, он убьёт их интерес, затормозит их умственное развитие». С помощью нестандартных задач интенсивнее формируется интерес и достигается цель углубления. Поиск решения нестандартных задач является прекрасным средством развития критического мышления, строгости суждений и математического вкуса. Одним из таких средств является использование софизмов на уроках математики.

Конечно, не следует, и преувеличивать роль софизмов в развитии критичности мышления. Они ни в коем случае не должны доминировать над обычными, традиционными упражнениями. Но как раз своей не стандартностью они «помогут» решить проблему заинтересованности в обучении, а если правильно организовать процесс внедрения софизмов в ход урока, то во многом облегчится задача развития критичности мышления, потому, что софизмы относятся к типам заданий, решение которых основано на рассмотрении различных ситуаций. При регулярном использовании софизмов на уроках у учеников вырабатывается своеобразная «подозрительность», что естественно указывает на хорошо развитую критичность мышления. Причём, софизмы универсальны в обучении тем, что подходят для учащихся всех возрастов.

Софизмы занимают, пусть скромное, но достойное место в процессе обучения и в развитии одного из качеств мышления – критичности.

Литература

1. Брадис В.М. Ошибки в математических рассуждениях. / М.: Просвещение, 1967, -191с.

2. Гайдук Ю.М. «Математические софизмы» // журнал «Математика в школе», № 6, 1952.

3. Гарднер М. Математические головоломки и развлечения. / М.: Мир, 1971, 511с.

4. Грудёнов Я.И. «Совершенствование методики работы учителя математики»./ М.: Просвещение, 1990.

5. Дьюи Джон. Психология и педагогика мышления. / М.Лабиринт, 1999, - 192с.

6. Зайкин М.И. Развивающий потенциал математики и его реализация в обучении (сборник научных и методических работ, предоставленных на региональную научно-практическую конференцию) / «Арзамас, 2002, 334с.

7. Кордемский Б.А. Как увлечь математикой. / М.: Просвещение, 1981,112с.ил.

8. Лук А.Н. «Мышление и творчество». / М., Политиздат, 1976,-144с.

9. Мадера А.Г. Мадера Д.А. Математические софизмы: Перавдоподобные рассуждения, приводящие к ошибочным рассуждениям: Кн. Для учащихся 7- 11кл / А.Г.Мадера, Д.А.Мадера. / М.: Просвещение, 2003.-112с.

10. Математика. // Приложение к газете «Первое сентября» № 46, 1997г.

11. Матюшкин А.М. Проблемные ситуации в обучении. / М.: Просвещение, 1972.

12. Немов Р.С. Психология: Учеб. для студ. высш. пед. учеб. заведений: В 3 кн– 4-е изд. / М.: Гумакнит. изд. центр ВЛАДОС, 2003.-Кн.1:Общие основы психологии.-688с.

13. Немов Р.С. Психология: Учеб.для студ.высш.пед.учеб.заведений: В 3 кн. – 4е изд. / М.:Гумакнит.изд.центр ВЛАДОС, 2003.-Кн.2:Общие основы психологии.-608с.

14. Перловский. Физические и метафизические концепции мышления. // Звезда, № 8, 1999.

15. Податов А.П. Математические софизмы, парадоксы и логические задачи. / Улан-Удэ: Бурятское книжное издательство, 1962.

16. Решетников В.И Формирование приёмов мышления школьников. / М.: Наука, 1973.

17. Талызина Н.Ф. формирование познавательной деятельности учащихся. / М. Знание, 1983 г.

18. Халперн Д. Психология критического мышления. / СПб.: Издательство «ПИТЕР»,2000.

19. Хрестоматия по истории философии. Учебное пособие для вузов. В 2-х ч. Ч.1. / М.: Прометей, 1994.-536с.

20. Ярский А.С. Что делать с ошибками. // журнал «Математика в школе», № 2,1998.