Смекни!
smekni.com

Теории управления (стр. 14 из 22)

n=1,2...

Комментарий к формуле (3) :

Фильтр Калмана сглаживает шумы и оказывается, если шу-

мы

гауссовские, то этот фильтр является оптимальным.

(4)

n ®¥

Т.е. среднеквадратическая ошибка будет минимизирована.

Если шумы

не являются гауссовскими, то такая оценка

является ассимптотически минимальной, т.е. (4) выпол-

няется когда n ®¥.

Формула (4) является критерием минимума среднеквадрати-

ческой ошибки.

Фильтр Калмана дает оценку процесса

истинного процесса

для гауссовских шумов, оптимальную по критерию (4),

т.е. по критерию минимума среднеквадратической ошибки.

Замечание 1 : Оптимальность означает, что не существует

другого фильтра, который мог бы дать такие

же результаты по среднеквадратической ошибке.(Остальные

фильтры дают большую ошибку)

Замечание 2 : Фильтр Калмана, в отличие от согласованного

фильтра, выделяет форму сигнала наилучшим

образом. (Согласованный фильтр обнаруживает сигнал и дает

максимум отношения сигнал/шум на выходе и сильно искажает

сигнал) Для согласованного фильтра все равно какая форма

сигнала на выходе, а фильтр Калмана выдает тот же сигнал,

что и на входе. Т.е. согласованный фильтр - для обнаруже-

ния сигнала, а фильтр Калмана - для фильтрации от шумов.

Замечание 3 : Фильтр Калмана записывается во временной

области, а не в частотной, как фильтр Вин-

нера.

Фильтр Виннера - реализован в частотной области.

(5)

K(w) - оптимальная функция передачи, которая мини-

мизирует среднеквадратическую ошибку.

y(t)
- Оценка оптимальна. Она минимизирует СКО.

- энергетический спектр (распределение энергии

случайного процесса).

- энергетический спектр помехи.

Фильтр Калмана и Виннера дают

-
одинаковое качество фильтрации,

однако фильтр Калмана проще ре-

ализуется на ЭВМ. Поэтому его и

АЧХ (пунктир) используют.

-


режекция

помехи

Анализ фильтра Калмана


Фильтр

Калмана

;

x(t)- ненаблюдаемый случайный процесс

y(t)- наблюдаемый случайный процесс

y(t) На входе фильтр Калма-

на использует наблюде-

ния и начальные усло-

вия. На выходе фильтра

x(t) получается исходный

процесс x(t).


Фильтрация медленных процессов

x(t)

При а=0.999,

,

есть медленный процесс, тогда

, это следует из формулы

(3).В этом случае

-

t - экстраполяция (прогноз),т.е.

прошлая и текущая оценки поч-

ти одинаковы. В таком фильтре Калмана почти полностью иг-

норируются наблюдения. При оценке ситуации фильтр Калмана

не доверяет наблюдениям, а доверяет лишь прошлой оценке.

Это годится для процессов, которые можно легко предска-

зать.

Фильтрация быстрых процессов

- большая величина (>1);
.

x(t)

динамическая ошибка