Смекни!
smekni.com

Теории управления (стр. 17 из 22)

экстраполяция, т.е. чем меньше

, тем точ-

нее будет оценка.

Глава 5

Оптимальное управление дискретными динами-

ческими системами

Существует два типа детерминированных управляемых процес-

сов (детерминированных систем)

(1)

- детерминированная система

- управление (некоторая функция от дискретного

времени, которая входит в разностное уравнение

динамической системы)

Стохастическая управляемая система

(2)

, где
- шум(может быть белым

),

а может быть и небелым, например, описываться сколь-

зящим средним (

).

Критерий оптимального управления

Пусть модель (1) или (2) генерирует случайный процесс :

- управляемый процесс с дискретным

временем, т.е. процесс должен развиваться таким образом,

чтобы минимизировать некоторую функцию риска, тогда уп-

равление называется оптимальным.

Математически это выглядит так :

,

где f(×) - выпуклая функция

При движении ракеты по некоторой траектории из точки А в

точку В траектория должна быть такой, чтобы минимизиро-

вать энергетические затраты на управление.

Пример 2 :

Существует некоторая эталонная траектория.

Необходимо привести движение про-

цесса к эталону за минимальное

время. Это называется оптимизация

x(t)-эталон по быстродействию. Существует мно-

жество способов аналитического на-

хождения оптимальной функции упра-

x(t) вления.

Метод динамического программирования

Имеется детерминированная система :

(1)

Принцип Бэлмана - состоит в том, что оптимальное управ-

ление ищется с конца в начало (из будущего в прошлое).

Задача решается в обратном направлении.

(2)

Аналитическое решение задачи по Бэлману

Предположим, что мы отправились из

и прошли траекторию:

. И предположим, что за ‘k’ шагов управление вы-

брали. Принцип динамического программирования основывает-

ся на том, что любой кусок траектории оптимального управ-

ления является оптимальным.

(3)

Траектория от (k+1) до ‘n’ называется хвостом.


N - последняя точка в управлении



С учетом (3) запишем :

(4)

Допустим, что начиная от шага (k+1) до ‘n’ в формуле (4)

оптимальное управление уже выбрано.

(5)

k=N,N-1,...,1


(6)

Формула (6) называется уравнением Бэлмана (уравне-

ние динамического программирования)

Выводы: (из уравнения (6))

Уравнение (6) позволяет в реккурентной форме вы-

вычислить управление, шаг за шагом, от точки N

до 1 (из будущего в прошлое) получить минимиза-

цию (6) на каждом шаге. Получить

. Значе-

ния управления фактически получаются методом пе-

ребора. Оптимальная траектория

) неиз-

вестна до самого последнего шага.

Если задача имеет большую размерность, то

сложность при вычислении очень большая. Если

вводить динамические системы (т.е. модели), то

можно значительно упростить метод нахождения оп-

тимального управления. Т.е. получить управление

в замкнутом виде (в виде некоторой формулы).

Синтез оптимального управления для марковских динамичес-

ких систем.

(1)

;

;
; где -

- управление;
- шум динамической системы.

Управление должно менять

- траекторию, и изменять ее так, чтобы минимизировать средний критерий качества,

причем управляется динамическая система не по всем коор-

динатам.

- управляемый случайный процесс.

Динамическая система, сама как таковая, не наблюдается, а

наблюдается j(

)(нелинейно преобразованная фазовая пере-

менная) с шумом. В этом случае говорят, что динамическая система ненаблюдаема напрямую. Для того, чтобы сделать ее

наблюдаемой необходимо использовать теорию нелинейной

фильтрации (см. предыдущие лекции).

В этом случае получаем оценку нелинейной динамической

системы в условиях линеаризации по Тейлору :

(2)

Синтез оптимального управления используя (2) проведем применив квадратичный критерий качества, причем управле-

ние динамической системой будем вести к некоторому этало-

ну, т.е. задано :

, i=1,2...n

Критерий оптимизации

(3)

;

где || - норма,

.

Риск складывается из двух слагаемых :

1-е слагаемое : Это есть квадрат отклонения траектории от

эталона. Оно должно быть минимизировано с

учетом формулы (2).

2-е слагаемое : Это есть сумма с квадратом самого управ-

ления (некоторая сила) должны быть мини-

мизированны (так должно быть всегда)

Минимизация (3) - это достаточно сложная задача вариаци-

онного исчисления (просто взять здесь производную по ‘u’

не удается).

Для минимизации (3) используем уравнение Бэлмана :

(4)

В формуле (4) минимизируя шаг за шагом получим :

(5)

; где
- матрица