Смекни!
smekni.com

Теории управления (стр. 19 из 22)

Y y - угол места

;

Доплеровская частота : Любая движущаяся система, облучае-

мая электромагнитной энергией, из-

лучает эту энергию.

; где
- радиальная скорость.

Структурная схема следящего измерителя

y(t)=S(t,q(t))+h(t))

+ D(t) Фильтр

Дискриминатор экстраполя-

тор

-

рис.1


Синтезатор

опоры (блок 3)

D(t) - невязка.

- оценка.

Эта схема была построена в 30х годах инженерами-учеными.

Однако сначала 60х годов оказалось, что ее можно синтези-

ровать, используя теорию нелинейной фильтрации.

На рис.1 представлена схема следящего измерителя, где

управление осуществляется с использованием ООС. Эта

структура состоит из 3х блоков.

1й блок: - дискриминатор. На вход его подается смесь сиг-

нала S(t,q(t))+h(t) (аддитивная смесь), где

q(t) - меняющийся парметр. Нужно получить его оценку

.

На другой вход дискриминатора подается копия сигнала S(t,q(t)), которая должна повторять сигнал, спрятанный в

шумах. Это достигается путем экстраполяции (предсказание) случайного процесса. На входе дискриминатора образуется

невязка :

- это есть невязка нелинейной

фильтрации.

2й блок: - фильтр экстраполятор (блок фильтрации). На его

вход поступает невязка. 2й блок формирует те-

кущую оценку случайного процесса q(t). Это окончательный

нелинейный фильтр - расширенный фильтр Калмана. В этом же

блоке формируется оценка экстраполяции (см. далее) и эта

оценка подается на синтезатор опоры.

3й блок: - формирует копию сигнала. Оценка q(t) формиру-

ется по следующему критерию :

- критерий среднеквадратической ошибки.

Оптимальная оценка по критерию минимума среднеквадрати-

ческой ошибки получается с помощью только лишь нелиней-

ной фильтрации.

Замечание : Фильтрация нелинейна потому, что невязка фор-

мируется нелинейно ( оцениваемый параметр

q(t) входит в сигнал нелинейно), S(t,q(t)) -

нелинейно.

Принцип экстраполяции для задач синтеза следящих измери-

телей управляемых с помощью ООС

Следящий измеритель отслеживает некоторый (многомерный)

параметр

, причем имеются наблюдения :

(1)

, где
- некоторая нелинейная

функция

В радиоавтоматике,в непрерывном времени это выглядит так:

, где
; 0<t<T.

А -амплитуда гармонического колебания, которая, например,

несет информацию об угловом положении цели.

Т - время наблюдения

t - время запаздывания, несет информацию о временном по-

ложении сигнала


t Т

t

- доплеровская частота.

y(t)- модуляция сигнала (известна заранее)

j(t)- некоторая начальная фаза сигнала, которая несет ин-

формацию об угловом положении цели. Либо j(t)- ме-

шающий параметр.

Система слежения за q(t) - следящий измеритель. Общий

вид записи см. (1).

Решение проблемы синтеза следящего измерителя :

Пусть q(t)

.Рассмотрим q(t) на дискретной сетке ®
,

где

, Dt - интервал дискретизации.

(2)

; g<1

(3)

- 3х мерный вектор,

- фазовая координата

- приращение скорости

- ускорение (второе приращение)

Используя (3) модель (2) преобразуется :

(4)

h=|1 0 0| - вектор 3´3 ,

А - матрица 3´3, такая, что получается модель (2).

Используя модель (4) видим, что верхнее уравнение линей-

ное, а нижнее уравнение нелинейное. Используя теорию не-

линеной фильтрации получим оценку :

(5)

(5) - уравнение нелинейной фильтрации.

Структурная схема, которая реализует алгоритм следящего

измерителя (

) выглядит так :


дискриминаторфильтр экстраполятор


+ S

А

Dt

синтезатор