Смекни!
smekni.com

Теории управления (стр. 22 из 22)

f

Ф-2 Df


f

Дискриминационная характеристика - это разность фильтров

Ф-1 и Ф-2. Она формирует невязку

.

(1)

Эта система используется для оценки доплеровской частоты,

меняющейся во времени. Это следует из уравнения (1), где

нижнее уравнение дает поправку доплеровской частоты за

один шаг.Невязка формируется также как в a,b,g - фильтрах.

Глава 7

Устойчивость стохастических систем

В радиоавтоматике все без исключения системы являются

стохастическими, т.е. сама динамическая система описыва-

ется стохастическими разностными уравнениями. Наблюдения

тоже записываются с учетом шумов.

1) Линейные стохастические системы

(1)

;

- шум динамической системы

- шум наблюдений

- m-мерный вектор

с - матрица перехода

Устойчивость определяется нормой матрицы ‘c’.

Достаточным условием устойчивости (1) является :

, где

(2)

, где
- элементы матрицы ‘c’

с =|

|, i=1,...,m ; k=1,...,m

Если условие (2) выполняется, то система всегда бу-

дет устойчива.

Замечание: В некоторых случаях система может быть устой-

чивой , если

, потому что условие (2) яв-

ляется достаточным, но не необходимым.

Пример стохастической системы 1-го порядка:

(1)

Оценка

- система будет устой-

чива при 0<c<1.

,
0<c<1 - является необходи-

c>1 мым и достаточным условием

устойчивости системы.

Устойчивость нелинейных систем

Нелинейная стохастическая система :

(3)

Устойчивость нелинейных динамических систем опре-

деляется функцией Ляпунова.

Определение устойчивости по Ляпунову для детерминирован-

ной системы.

Вводится специальная функция, называемая функцией Ляпуно-

ва. Обозначается :

. Функция удовлетворяет следующим

условиям :

1. Если x=0, то

=0

2. Приращение функции Ляпунова во времени D

0,

т.е. функция должна быть убывающей:

Для стохастической системы (3)

обычно функцию Ляпунова выби-

рают так:

. А условие

устойчивости для системы (3)

будет следующим:

1)

,

i®¥ (ассимптотически)

2)

Анализ качества работы стохастических систем радиоавтома-

тики

Качество линейных и нелинейных стохастических систем оп-

ределяется реальным качеством фильтра. (см. выше)

Синтез предполагает, что модель соответствует реальному случайному процессу, который мы фильтруем. В этом случае

качество определяется следующим образом :

Пример: Одномерный фильтр Калмана.

Фильтр :

;

- шум наблюдений

- апостариорная дисперсия

- коэффициент усиления

фильтра Калмана

i - дискретное время

Модель :

Качество фильтрации определяется адекватностью модели и реального процесса.Как проверить адекватность модели

реальному процессу ? Сделать это

можно только по невязке:
,

где

.


i

Теорема : Процесс тогда и только тогда адекватен модели,

когда невязка является белым шумом.

Замечание: Это может случиться только тогда, когда

Проблема качества определяется проблемой экстраполяции.