Пример : Нелинейной динамической системы уравнений Вандер
Поля.
Дифференциальное уравнение называется нелинейным, если
оно нелинейно относительно разыскиваемой переменной (са-
мой переменной или ее производной) (нелинейность из-за
квадрата)
Требуется найти решение x(t) .
Существуют численные методы решения таких дифференциаль-
ных уравнений ( численные методы рассматриваются на сет-
ке с шагом
дискретное.
исчисление’.
U
Численный метод Эйлера ( численный метод)
Численный метод предназначен для решения не-
линейных дифференциальных уравнений.
Берется из апприорных (начальных условий)
подставляется в правую часть уравнения (5) и
т.д. Это называется реккурентностью.
Качественная теория решения нелинейных диффе-
ренциальных уравнений (в приложении к нелинейным систе-
мам)
В отличие от численного метода (Метод Эйлера), который
дает решение в 1й точке ( не дает траекторию (нужно де-
лать 1000 точек, чтобы получить траекторию)).
Пуан Каре в 19 веке дал качественную теорию решения диф-
ференциальных уравнений, она используется для решения не-
линейных дифференциальных уравнений в виде некоторого фа-
зового портрета (некоторый графический материал, по ко-
торому можно анализировать траекторию движения динамичес-
кой системы, т.е. фактически получить решение (1-го из
решений).
На примереX и Y :
функция
Найти решение означает - найти y=j(x)(2),
которая удовлетворяет (1).
Пуан Каре развил метод , как найти (2) прямо на
плоскости.
Метод изоклин
Если f(x,y)=const, то
f(x,y)=const все производные имеют одно и тоже значение,
такая кривая называется изоклиной. (tga=const, a=const)
Можно вычислить множество изоклин, это множество дает по-
ле направлений. Касательная к этомуполю и есть решение,
т.о. это есть траектория, которую мы разыскиваем.
|
|
уравнения
|
x