МИНИСТЕРСТВО ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РФ
МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ
кафедра БФ2
КУРСОВОЙ ПРОЕКТ
по дисциплине
“Технология криогенного и специального машиностроения”
Студент Кудряшов Д. В.
группа 9541д БФ-2
шифр 94711
Преподаватель Комаров В.В.
МОСКВА
1999
1. Механическая обработка вала.
1.1. Исходные данные и служебное назначение.
Габаритные размеры вала:
· диаметр – 90 мм
· длина – 638 мм
Материал - 40ХН2МА
Заготовка - прокат
Вал-шестерня является одной из основных деталей редуктора, служит для передачи большого крутящего момента, понижения скорости вращения промежуточного или выходного вала.
1.2. Выбор заготовки и описание конструкции вала.
Вал состоит из цилиндрической части, двух торцов с центровыми отверстиями (один торец с двумя шпоночными пазами) и участка с нарезанными зубьями косозубой передачи. Шероховатость вала Rа=1,6 мкм. Шероховатость поверхности вала под подшипники Rа=0,4 мкм. Твердость вала должна быть не менее 28…32 HRC. Вес готового вала-шестерни составляет 13,4 кг.
1.3. Анализ технологичности вала.
Качественный анализ технологичности вала.
№ | Требования технологичности | Характеристика технологичности |
1 | 2 | 3 |
1.2.3.4.5.167.8.9.1011 | Деталь должна изготавливаться из стандартных или унифицированных заготовок.Свойства материала детали должны удовлетворять существующей технологии изготовления, хранения и транспортировки.Конструкция детали должна обеспечить возможность применения типовых, групповых или стандартных технологических процессов.Конструкция детали должна обеспечивать возможность многоместной обработки.Возможность обработки максимального количества диаметров высокопроизводительными методами и инструментами.Перепад диаметров шеек должен быть минимальным. Диаметры шеек должны убывать от середины к торцам вала или от одного торца к другому.При наличии резьб на концах вала предпочтение следует отдавать внутренней резьбе.Отсутствие глубоких отверстий малого диаметра.Форма конструктивных элементов детали (КЭД) – фасок, канавок и т.п. Элементов должна обеспечивать удобный подвод инструмента.Унификация КЭД для использования при обработке станков с программным управлением.С целью использования роботов, конструкция должна иметь поверхности удобных для захвата. | ТехнологичнаТехнологичнаТехнологичнаТехнологичнаТехнологичнаНетехнологичнаТехнологичнаТехнологичнаТехнологичнаТехнологичнаТехнологична |
Вывод: деталь вала имеет конструкцию, которую надо признать технологичной, т.к. удовлетворяет 89% требований при отработке конструкции на технологичность.
Рассчитаем такт производства:
Тпр = Fд / N , где
F - годовой фонд времени;
N - годовой объем выпуска детали.
Тпр = 3945 / 20000 = 0,20 ч/шт. - крупносерийное производство.
1.4. Выбор баз.
При обработке вала необходимо провести операции: токарную и фрезерную. Токарная операция проводится за один установ при выборе установки в трехкулачковый самоцентрирующий патрон с использованием жесткого центра.
1.4.1. Составление маршрутной технологии обработки.
Содержание маршрутной технологии процесса обработки см. в Приложении.
1.5. Расчет припусков на обработку.
Маршрут обработки поверхностиÆ 55 f7 | Элементы припускамкм | Расчетные величины | Допуск на выпол-няемые размеры, мкм | Принятые размеры по переходам, мм | Предельный припуск | ||||||
Rz | h | Då | e | припу-ска zi, мкм | min диаметр, мм | наиме-ньший | наибо-льший | Zmax | Zmin | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Прокат | 160 | 250 | 2500 | - | 61,472 | 2000 | 61 | 63 | - | - | |
Точение: Черновое | 50 | 50 | 150 | 0 | 5820 | 55,652 | 400 | 55,7 | 56,1 | 6,9 | 5,3 |
Чистовое | 25 | 25 | 6 | 0 | 500 | 55,152 | 200 | 55,15 | 55,35 | 0,75 | 0,55 |
ШлифованиеЧерновое | 10 | 20 | 0 | 0 | 112 | 55,04 | 60 | 55,04 | 55,1 | 0,25 | 0,11 |
Окончательное | - | - | - | - | 60 | 54,98 | 20 | 54,98 | 55 | 0,1 | 0,06 |
Суммарное отклонение расположения при обработке сортового проката круглого сечения (валик) в центрах:
, гдеDåк – общее отклонение оси от прямолинейности;
Dу – смещение оси заготовки в результате погрешности центрирования;
, гдеТ – допуск на диаметральный размер базы заготовки, использованной при центрировании, мм.
Dåк= Dк*Lк=0,12*449=54 мкм
Lк=l1+l2=449 мм
Черновое обтачивание.
Dчерн.=Кт* Då=0,06*2500=150 мкм, где
Кт – коэффициент уточнения(0,06).
Dчист.=0,04*150=6 мкм
Расчет минимальных припусков на диаметральные размеры для каждого перехода.
2Zmin=2(160+250+2500)=5820 мкм
2Zmin=2(50+50+150)=500 мкм
2Zmin=2(25+25+6)=112 мкм
2Zmin=2(10+20)=60 мкм
Расчет наименьших размеров по технологическим переходам производим складывая наименьшие предельные размеры соответствующие предшествующему технологическому переходу с величиной припуска на выполняемый переход.
54,98+0,06=55,04
55,04+0,112=55,152
55,152+0,5=55,652
55,652+5,82=61,472
Определяем наибольший предельный размер.
54,98+0,02=55
55,04+0,06=55,1
55,15+0,20=55,35
55,7+0,4=56,1
61+2=63
Расчет фактических максимальных и минимальных припусков по переходам производим, вычитая соответствующее значение наибольших и наименьших предельных размеров соответствующих выполняемому и предшествующему технологическому переходу.
Максимальные припуски:
55,1-55=0,1
55,35-55,1=0,25
56,1-55,35=0,75
63-56,1=6,9
Минимальные припуски:
55,04-54,98=0,06
55,15-55,04=0,11
55,7-55,15=0,55
61-55,7=5,3
Z0max=0,1+0,25+0,75+6,9=8 мм
Z0min=0,06+0,11+0,55+5,3=6,02 мм
Проверка.
Zобщ.мах - Zобщ.min=Тз-Тд
8-6,02=2-0,02
1,98 =1,98,
расчет выполнен верно.
1.6. Проектирование операционной технологии процесса обработки вала.
Разрабатываемый технологический процесс должен обеспечить повышенную производительность труда и качество стали, сокращение трудовых и материальных затрат на его реализацию.
Заготовка вала выбрана из прутка в целях экономии материала. Штучное время обработки вала можно уменьшить за счет сокращения вспомогательного времени, для этого применим станок с ЧПУ 16К20Ф3.
1.7. Выбор оборудования, технологической оснастки и средств контроля.
Применение станков с ЧПУ существенно уменьшает вспомогательное и основное время на обработку вала по сравнению с универсальными станками, учитывая меньшее количество установок в приспособлении при фрезеровании пазов и зубьев.
1.7.1. Станки.
Токарно-винторезный станок с ЧПУ 16К20Ф3.
Зубофрезерный полуавтомат 53А50.
1.7.2. Вспомогательное оборудование.
1) Слесарный инструмент:
Напильник ГОСТ 1465-80
2) Режущий инструмент:
Резец 2103-0075 ГОСТ 18879-73
Резец 2141-0014 ГОСТ 18883-73
Резец 2130-0005 ГОСТ 18884-73
Сверло центр. Æ 6,3 2317-0006 ГОСТ 14952-75
Сверло Æ 3,9 2301-0030 ГОСТ 10902-77
Сверло Æ 14,5 2301-0048 ГОСТ 10903-77
Развертка 2361-0052 ГОСТ 1672-80
Метчик 2621-1611 ГОСТ 3266-81
Шлифовальный круг ГОСТ 2424-83
Шлифовальный круг ГЕМ ГОСТ 4381-80
Фреза Æ125 2214-0003 ГОСТ 24359-80
Фреза Æ6 2234-0355 ГОСТ 9140-78
3) Станочное приспособление:
Планшайба поводковая
Хомутик
Центра
Призмы
4) Измерительный инструмент:
Штангенциркуль I 125-0,1 ГОСТ 166-80
Штангенциркуль II 160-0,05 ГОСТ 166-80
Штангенциркуль III-250-800-0,1 ГОСТ 166-80
Пробка резьбовая М16х1,5-7Н 8221-3068 ГОСТ 17758-72
Калибр-кольцо 1:10 ик 9585; 1:10 ик 9366
Калибр на симметричность шпоночных пазов ИК 11127
Скоба индикаторная ик 8291А; ик 5699
Штатив ГОСТ 10197-70
Концевые меры длины ГОСТ 9038-83
Индикатор ич ГОСТ 577-68
Образцы шероховатости ГОСТ 9378-75
Нутромер 50-100 ГОСТ 868-82
Микрометр мк 0-25 ГОСТ 6507-78
Микрометр мк 50-75 ГОСТ 6507-78
Микрометр мк 75-100 ГОСТ 6507-78
Микрометр мр 50-0,002 ГОСТ 4381-80
Микрометр мр 100-0,002 ГОСТ 4381-80
1.8. Расчет режимов резания.
Материал вала - сталь 40ХН2МА.
dв=850 МПа
Точить поверхность вала Æ 55 f7.
Т.к. Ra=1,6 мкм, то t=0,2 мм (см. [4], стр. 142).
Подача SI=0,165 мм/об, но т.к. Ra=1,6, то радиус при вершине резца r=1,0 мм.
Для стали dв=850 МПа S=0.45*SI=0,074 мм/об
Находим скорость резания по формуле:
(м/мин), гдеCv;m,x,y – коэффициент и показатели степени в формуле скорости резания при обработке;
Т – среднее значение стойкости (30 – 60 мин);
t – глубина резания;
S – подача;
Кv – коэффициент является произведением коэффициентов.
Кv=Кмv*Киv*Кпv
Кv=1*1*1=1
, гдеСv=350;
Х=0,15;
У=0,35;
m=0,2.
Находим частоту вращения:
.