Смекни!
smekni.com

Получение вторичных продуктов из торфа и сланцев (стр. 3 из 6)

В заключение отметим, что процесс гидрогенолиза углеводов растительного сырья был исследован в СССР на камеральной установке и в настоящее время отрабатывается в опытно-промышленном масштабе. Получающаяся смесь глицерина, гликолей, гексетов и пенгетов разделяется методом ректификации.

Таким образом, все основные, принципиальные вопросы получения глицерина и гликолей из углеводов решены. В качестве источника последних может •быть использовано любое растительное сырье, содержащее такие полисахариды, которые при гидролизе дают достаточное количество гексоз. Известно, что слаборазложившиеся верховые торфы содержат до 60% полисахаридов в расчете на абсолютно сухое вещество. Гидролизаты, получаемые из таких торфов, содержат сахара, состоящие приблизительно на 70% из гексоз. Последние, как мы указывали, представляют наибольшую ценность для процесса гидрогенолиза. Заметим, что стоимость сахара торфяных гидролизатов составляет всего лишь 60 руб. за 1 т.

В связи с этим нами было проведено исследование процесса гидрогенолиза торфяных гидролизатов с целью подбора таких условий, при которых могли быть получены наиболее высокие выходы глицерина и гликолей.

В качестве сырья использовались термогидролизат — отжим Бокситогорского завода искусственного обезвоживании торфа (ВТН) и гидролизат, получавшийся по методу ВЫИИТП на установке того же института. Гидролизу подвергался верховой фускум-торф Ларьямовекого месторождения (степень разложения 12%).

В связи с тем, что торфяные гидролизаты содержат вещества, отравляющие катализаторы гидрогенизации, они предварительно подвергались очистке, котораи осуществлялась двумя способами:

1) торфяным коллактивитом (сульфоторфом) с последующей доочисткой на ионообменных смолах

2) только одним коллактивитом.

После указанных операции гидролизаты упаривались под вакуумом (остаточное давление — 10 - 15 мм рт. ст.) до содержания 20 - 40 г редуцирующих веществ (РВ) в 100 мл раствора.

Количественное определение углеводов в неочищенных и очищенных гидролизатах производилось методом бумажной хроматографии с последующим проявлением анилинфталатом, и актированием окрашенных водных Сахаров и фотометрированием полученных растворов.

Предназначенный для гидрогенолиза гидролизат нейтрализовался окисью кальция до рН=7, при этом раствор приобретал томно-бурую окраску и выпадал осадок сульфата кальция. Последний отфильтровывался под вакуумом, и раствор вторично пропускался через колонку с коллактивитом (внутренний диаметр - 20 мм, высота слоя адсорбента - 30 мм), в результате чего он обесцвечивался.

Процесс гидрогенолиза проводился в присутствии системы катализаторов: гетерогенного (50% Ni) Уфимского завода и гомогенных, в качестве которых использовались окись кальция и гидроокись железа, получавшаяся при внесении в раствор окиси кальция, соли Fe2(S04)3*9Н20. Так как катализатор Уфимского завода содержит никель в виде основного карбоната, он перед загрузкой в раствор моносахаров восстанавливался при 4500С в течение трех часов в токе водорода, после чего также в токе водорода охлаждался до 80—50°С и выгружался в дистиллированную воду.

После охлаждения автоклава катализат выгружался, отфильтровывался от катализатора, упаривался под вакуумом, и в нем определялось содержание многоатомных спиртов методом бумажной хроматографии.

В результате экспериментов с гидролизатами, очищенными по двухстадийной схеме (коллактивит - иониты), было установлено, что выход глицерина на исходные сахара составляет 25—33%, этиленгликоля — 18—24% из 1,2-про-пиленгликоля — 19 - 26% . В этой же таблице для сравнения приведены данные, полученные при гидрогенолизе раствора глюкозы в идентичных условиях. Видно, что выходы целевых продуктов, получаемые при гидрогенолизе торфяных гидролизатов, хотя и меньше, чем при использовании чистой глюкозы, все же достаточно высоки. Обнадеживающим является также тот факт, что рН катализата колеблется в пределах семи единиц. Это свидетельствует о том, что побочные реакции, приводящие к образованию кислот, которые могут разрушать активные центры никелевого катализатора, ч нашем процессе ослаблены. В связи с этим катализатор может быть использован дважды без существенного снижения выходов глицерина и гликолей.

Опыты с гидролизатамн, которые осветлялись только коллактивитом, показали, тго выходы глицерина и гликолей снижаются. Сравнительно низкие выходы целевых продуктов получены по той причине, что гидрогенолиз гекситов и пентитов прошел не до конца. При увеличении времени процесса до 1ч выходы глицерина и гликолей возрастают.

С целью определения возможности многократного использования катализатора были проведены специальные опыты. Установлено, что при повторном применении катализатора выходы целевых продуктов и pH среды снижаются. Аналогичное явление наблюдается при добавлении к использованным катализаторам 20% вновь восстановленного контакта. Однако падения рН среды в этом случае не наблюдается.

Заметим, что в рассматриваемой серии экспериментов существенно уменьшаются затраты па предварительную подготовку гидролизата, так как исключается вторая наиболее дорогостоящая стадия очистки на заводах. Поэтому в производственных условиях, по-видимому, будет целесообразно проводить гидрогенолиз гидролизатов, осветленных только коллактивитом.

На основании проведенного исследования можно сделать вывод о принципиальной возможном использования торфяных гидролизатов в качестве сырья дли получения глицерина и гликолей. Проведенный: нами предварительный экономический расчет показал, что себестоимость глицерина из торфа оказывается не выше себестоимости глицерина из подмыленных глюкоз.

Технологическая схема производства гексаторфа. [1]

В Калининском политехническом институте с участием кафедр «Технология пластмасс», «Торфяная механика», «Машины и аппараты химических производств» разработан рабочий проект автоматизированного завода по производству гексаторфа.

Гексаторф - эти гранулированное, нейтральное, торфоминеральное удобрение с содержанием азота, фосфора и калия по 6%. От известных торфоминералъных удобрений гексаторф отличается:

высоким содержанием питательных веществ;

выпуском в гранулированном, неслеживаюшемся виде, позволяющем механизированное внесение удобрения (рассев туговысевателям и высев его с семенами сельскохозяйственных культур);

прочностью гранул, неразрушающихся при длительном хранении и транспортировке. Вследствие прочности, гранулы отдают питательные вещества постепенно, что обеспечивает их доступность для растении в течение всего вегетационного периода;

нейтральной реакцией среды, незначительной гигроскопичностью и стерильностью- Последнее практически не лимитирует срок храпения удобрения;

В настоящее время в гранулированных и не слеживающихся формах выпускается лишь незначительная часть минеральных удобрений. Органо-минеральные гранулированные удобрении до сих пор, как отечественной промышленностью, так и зарубежной не выпускаются.

В решениях XXIII съезда КПСС указывается на необходимость к концу пятилетия поставлять удобрения сельскому хозяйству только в гранулированных и неслеживающихся формах.

Технологический процесс производства гексаторфа разработан по данным, полученным на экспериментальной установке, на которой ежегодно (с 1964 г.) производились опытные партии гексаторфа, применявшегося в полевых опытах в различных климатических зонах страны на разнообразных сельскохозяйственных культурах. Результаты опытов на культурах льна, картофеля, зерновых, овощей, риса, табака свидетельствуют о стабильной эффективности гексаторфа (при нормах внесения 100—300 мг/га).

При предусмотренной в проекте 3-сменной круглогодичной работе производительность завода составляет 3 - 100 т готовой продукции в год.

Технологическая схема получения гексаторфа выглядит следующим образом (см. рисунок).

Сырье - торф, двойной суперфосфат, калийная соль, формалин, аммиак - поступает на завод но узкоколейной железной дороге в торфовозных вагонах и цистернах. Сухие компоненты хранятся па складе сырья в бетонных бункерах 10, 11, 12, а жидкие - в стальных емкостях 15, 16.

Фрезерный торф со склада сырья грейферным захватом подается в дозировочный бункер 2, откуда поступает на сепаратор 1 для удаления крупных посторонних включений и отсева необходимой фракции размером менее 5.

Просеянный торф транспортируется в накопительный бункер 18, откуда по мере необходимости загружается в расходный бункер 19.

Минеральные компоненты, необходимые для приготовления гексаторфа, со склада сырья грейферным захватом подаются в соответствующие расходные бункера 20, 21. Раствор гексаметилентетрамина (источник азотного питания растений), получаемый в результате смешения формалина с аммиачной подои, из емкостей 15, 16 насосами 24, 23 подается в строго Определенном количестве 13, 14, а затем вначале формалин, далее аммиачная вода самотеком поступают в реактор 26. Готовый раствор насосом 23 подается в сборник 17, из которого он постепенно дозируется, в процессе перемешивания, в смеситель 6.

При 6%-ном содержании азота в готовом удобрении в торфомассу вводится такое количеству раствора гексаметилентетрамина, при котором она легко гранулируется в прочные гранулы. После дозирования сухие компоненты и раствор подаются в смеситель, где происходит равномерное и тщательное перемешивание. Из смесителя сырой негранулированный гексаторф поступает в промежуточный бункер, откуда непрерывно дотируется в шнековый пресс 7, где происходит дополнительное перемешивание и продавливание массы через фильтры (гранулирование). Сырые гранулы ленточным транспортером подаются в сушилку с «кипящим» слоем 9. Выбор сушилки данного типа позволяет интенсифицировать тепломассообмен н автоматизировать процесс сушки.