Смекни!
smekni.com

Теорія подібностей (стр. 3 из 5)

Уравнения, описывающие различные явления природы, можно рассматривать, как имеющие различную степень общности.

Наиболее общие уравнения, выражающие общие законы природы, такие, как общие законы механики, закон сохранения энергии, можно назвать уравнениями, охватывающими целый класс явлений. Таковы были уравнения, представляющие второй закон Ньютона и первый закон термодинамики. Эти общие уравнения могут получать различные частные виды в зависимости от того, к каким частным видам явлений данного класса они будут прилагаться. Так общие уравнения механики принимают вид уравнения Навье-Стокса в применении к течению жидкости, вид уравнения колебаний упругой среды и т. п. Эти виды явлений содержат отдельные свойства однотипных явлений, отличающихся друг от друга только заданием различных условий однозначности явлений. И, наконец, единичные явления выделяются из семейства численным заданием условий однозначности, которые для каждого единичного явления семейства буквенно одинаковы, но численно отличны друг от друга.

В дальнейшем свойство уравнений связи, которое налагает на них подобие явлений, будет излагаться сперва для самых общих знаков природы и для них будут выводиться теоремы подобия. Однако не меньшее значение будет иметь приложение общей теории подобия к частным случаям и к единичным явлениям, так как только таким путем окажется возможным скрыть наиболее важные стороны учения о подобии.

Теоремы подобия.

Для обеспечения максимальной эффективности (в широком смысле слова) любых экспериментальных исследований эти исследования необходимо организовать так, чтобы можно было определить критерии подобия и представить полученные результаты критериальной функциональной зависимость. Такой подход позволяет при ограниченном числе экспериментов дать оценку хода процесса или поведения системы при разнообразных сочетаниях параметров, их характеризующих, и, следовательно, получить ответы на те дополнительные вопросы, которые обычно возникают уже после окончания экспериментально-исследовательских и испытательных работ.

Рассмотренные положения, однако, относятся к случаю заведомо подобных процессов, т.е. определяют необходимые условия существования подобия. В связи с этим возникает естественный вопрос относительно того, как распознать подобие или специально обеспечить его при построении модели, т. е. вопрос об условиях, не только необходимых, но и достаточных для существования подобия. Такие условия включают в себя наряду с требованием равенства критериев подобия сопоставляемых процессов также и определенные дополнительные требования к условиям однозначности — требования подобия начальных и граничных условий сопоставляемых процессов (а при соблюдении геометрического подобия — и подобия геометрических характеристик соответствующих пространственных областей).

Изложенные выше положения относительно необходимых и достаточных условий подобия обычно систематизируются в виде первой, второй и третьей теорем о подобии; первые две теоремы определяют необходимые, третья — необходимые и достаточные условия подобия (Высказываются соображения, что только вторая теорема подобия может рассматриваться как теорема в том смысле, в каком это понятие употребляется в математике, а первая и третья теоремы являются правилами выявления и обеспечения подобия. В данном изложении сохраняется наиболее распространенная терминология — введенное еще И. Ньютоном название первой теоремы и предложенное М. В. Кирпичевым и А. А. Гухманом название третьей теоремы).

Первая теорема подобия. В основной современной формулировке, учитывающей возможность существования различных видов подобия, первая теорема имеет следующий вид: явления, подобные в том или ином смысле (полно, приближенно, физически, математически и т. д.), имеют определенные сочетания параметров, называемые критериями подобия, численно одинаковые для подобных явлений. Первая теорема подобия называется также теоремой Ньютона или Ньютона—Бертрана.

Первая теорема подобия утверждает, что для явлений (объектов, процессов), подобных в том или ином смысле, существуют одинаковые критерии подобия — идентичные по форме алгебраической записи и равные численно безразмерные степенные комплексы (произведения или отношения) определенных групп физических факторов, характеризующих эти явления. Формулируя необходимые условия существования подобия (одинаковые критерии подобия у подобных явлений), первая теорема, однако, не указывает способы установления подобия и способы его реализации при построении моделей.

Вторая теорема подобия. В основной формулировке эта теорема, чаще встречающаяся под названием π-теоремы, имеет следующий вид: всякое полное уравнение физического процесса, записанное в определенной системе единиц, может быть представлено функциональной зависимостью между критериями подобия, полученными из участвующих в процессе параметров.

Эта теорема утверждает, что полное уравнение физического процесса, записанное в определённой системе единиц, может быть представлено зависимостью между критериями подобия, т. е. зависимостью, связывающей безразмерные величины, определенным образом полученные из участвующих в процессе параметров. Так же как и первая, вторая теорема подобия основывается на предпосылке, что факт подобия между процессами известен, и устанавливает число критериев подобия и существование однозначной зависимости между ними. При этом выражения для критериев подобия могут быть получены, если известен состав параметров (факторов), участвующих в рассматриваемом процессе, но неизвестно его математическое описание. Теорема эта, однако, также как и первая, не указывает способов выявления подобия между сопоставляемыми процессами и способов реализации подобия при построении моделей.

Вторая теорема устанавливает возможность представления интеграла дифференциального уравнения физического процесса не как функции параметров процесса и системы, в которой протекают эти процессы, а как функция соответствующим образом построенных некоторых безразмерных величин — критериев подобия. Если исходное дифференциальное уравнение проинтегрировано, то функциональные связи между критериями подобия будут однозначно определены в соответствии с теми допущениями, которые были приняты при составлении и интегрировании данного уравнения. Если же дифференциальное уравнение отсутствовало или не интегрировалось, то вид функциональных связей между критериями подобия не будет выявлен.

Вторая теорема основывается на исследованиях Букингема, Федермана и Эренфест-Афанасьевой. Возможность представления интеграла как функции от критериев подобия, найденных из дифференциального уравнения, была строго доказана для частного случая Букингемом. В более общем виде это положение как математическая теорема было доказано Федерманом. Эренфест-Афанасье-ва привела доказательство в общем виде, показав условия, при которых интеграл можно представить как функцию критериев подобия. Одновременно было показано, что из соотношений, указывающих на однородность уравнения, связывающего физические величины (одинаковая размерность всех членов уравнения), и из возможности получения безразмерных соотношений после деления этого уравнения на любой из его членов следует важный вывод о существовании определенных соотношений между размерностями физических параметров. Эренфест-Афанасьевой было показано, что критерии подобия можно найти при отсутствии дифференциального уравнения процесса на основе анализа размерностей физических величин, участвующих в этом процессе. Эта возможность была сформулирована и строго доказана в виде теоремы, названной л-теоремой, поскольку упомянутые выше безразмерные параметры (критерии подобия) обозначались буквой л.

Третья теорема подобия. В наиболее распространенной формулировке третья теорема имеет следующий вид: необходимыми и достаточными условиями для создания подобия являются пропорциональность сходственных параметров, входящих в условия однозначности, и равенство критериев подобия сопоставляемых явлений. Третья теорема подобия именуется также обратной теоремой подобия или теоремой Кирпичева—Гухмана.

Напомним понятия условий однозначности. Известно, что дифференциальное уравнение в общем виде описывает бесконечное множество процессов, относящихся к данному классу. Так, например, дифференциальное уравнение u=iR+Ldi/dt описывает изменение тока во времени в цепи с активным сопротивлением R и индуктивностью L при включении ее на u=const. Условия, определяющие индивидуальные особенности процесса или явления и выделяющие из общего класса конкретный процесс или явление, называются условиями однозначности. К ним относятся следующие, не зависящие от механизма самого явления, факторы и условия:

геометрические свойства системы, в которой протекает процесс;

физические параметры среды и тел, образующих систему;

начальное состояние системы (начальные условия);

условия на границах системы (граничне или краевые условия);

взаимодействие объекта и внешней среды.

Очевидно, нельзя математически формулировать условия однозначности в общем виде. В каждом конкретном случае они могут быть различны в зависимости от рода решаемой задачи и вида уравнения. Так, для выделения определенного процесса из совокупности процессов, описываемых приведенным уравнением, достаточно знать параметры u, R, L и начальные условия, например, i=i0 при t=t0. В большинстве задач, связанных с исследованием полей, однозначность процессов определяется не только начальными условиями, но и свойствами среды, геометрическими свойствами системы и граничными условиями.

Вторая формулировка третьей теоремы подобия. Практически более удачная формулировка третьей теоремы, предложенная в последнее время, имеет вид, отвечающий реальным задачам создания различных моделей. Эта формулировка состоит из трёх положений.