Смекни!
smekni.com

Керамические строительные материалы и изделия (стр. 4 из 5)

прессовкой» изделия, что указывает на чрезмерно боль­шое прессовое давление, которое якобы и является причиной их возникновения. Однако в действительности механизм их возникновения гораздо сложней. Непосред­ственной, ближайшей причиной возникновения трещин расслаивания является упругое расширение прессовки. Расширение является деформацией, а всякая деформа­ция происходит в результате действия каких-то сил. Природа этих сил, возникающих в спрессованном изде­лии и вызывающих его упругое расширение, объясняется отдельными авторами по-разному. Чаще всего их воз­никновение объясняют упругим расширением запрессо­ванного воздуха (первый фактор) и упругим сжатием самой формы (второй фактор), в которой прессуется изделие. Оба эти фактора, несомненно, играют опреде­ленную роль в возникновении трещин расслаивания. Но, кроме того, в работе серией оригинальных опытов было показано, что в действительности отдельные участ­ки прессуемого изделия при одном и том же коэффициенте сжатия и при одном и том же общем прессовом дав­лении получают неодинаковое уплотнение и стараются сместиться в отношении друг друга. В силу этого в из­делии возникает «барический рельеф» (третий фактор), соответствующий различным давлениям и смещениям, которые испытывали отдельные участки изделия во вре­мя его прессования. Напряжения этих смещений и явля­ются зародышами трещин расслаивания.

В соответствии с изложенными представлениями для предотвращения трещин расслаивания рекомендуется применять порошки с возможно большей однородностью зерен по их крупности и, во всяком случае, с удалением из порошка более крупных зерен, оказывающих наиболь­шее сопротивление сжатию. Повышение влажностной однородности порошка также будет снижать его склон­ность к образованию трещин расслаивания, так как со­противление порошка сжатию зависит не только от его гранулометрического состава, но и от его влажности.

Влияние барического рельефа на образование трещин расслаивания не исключает участия в их образовании и запрессованного воздуха, что было подтверждено спе­циальными исследованиями, которыми было уста­новлено, что не весь воздух, содержащийся в порошке, вытесняется из него при прессовании. Подавляющее большинство воздухопроводящих каналов в периферий­ной части прессовок закрывается при сравнительно низ­ких давлениях—0,5 МПа при влажности порошка 10% и 5 МПа при влажности 8—10%. Коэффициент запрес­совки воздуха в порошке Кз.в доля запрессованного воздуха в общем его объеме в порошке при прессовании тонкозернистых глинистых порошков—находится в пре2 делах 0,37—0,715. Возрастание скорости прессования (переход от гидравлических прессов к рычажным) уве­личивает Кз.в на 20—50%.

Увеличение влажности порошка повышает внутрен­нее давление запрессованного в нем воздуха. Давление его внутри прессовки (при W =10—12%) достигает поч­ти 10 МПа, в то время как при влажности порошка 6—8% давление запрессованного воздуха не превышает 2 МПа. Высокое давление воздуха во влажных порошках приводит к возникновению в прессовках растягивающих напряжений и как следствие к образованию трещин рас­слаивания. В связи с этим некоторые специалисты реко­мендуют прессовать кирпич из порошков пониженной влажности (7—8%), но при более высоких давлениях— 40 МПа.

При медленном прессовании запрессованный воздух более равномерно распределяется в прессуемом порош­ке, в результате чего предотвращается образование от­дельных, более опасных зон, в которых усилия превы­шают прочность прессовки в момент конца ее сжатия.

Грубозернистые отощенные порошки обладают мень­шим Кз.в= 0,303— 0,57; интервал давлений, в которых происходит вытеснение воздуха, растянут у них до 10 МПа, упругое расширение у них ниже—не превыша­ет 4,5%. Поэтому упругое расширение в момент снятия давления у таких порошков почти не происходит и, сле­довательно, процесса расслаивания не наблюдается.

Четвертым фактором, обусловливающим упругое расширение прессовки, являются упругие деформации плоских глинистых частиц. Поэтому склонность к рас­слаиванию прессовок возрастает с увеличением содер­жания глинистой части в порошке.

Для полусухого прессования строительного кирпича серийно изготовляют пресс СМ-01, который является рычажным прессом двухстороннего ступенчатого прессо­вания.

Особенностью этого пресса является то, что подвиж­ные штампы у него только верхние, а двухстороннее прессование они осуществляют при помощи плавающей формы, которая является «манжетом» для нижних не­подвижных штампов. Пресс отличается хорошим запа­сом прочности, в силу чего он работает устойчиво. На некоторых действующих заводах продолжают еще рабо­тать прессы СМ-198 (АМ-11), а также СМ-143. Послед­ние выпускают для производства шамотного кирпича и по режиму прессования мало пригодны для нешамоти-рованных глинистых порошков.

3.3. Сушка спрессованного сырца.

На кирпичных заводах полусухого прессования, построенных до 1950 г., сушка сырца в обособленных искусственных сушилках отсутст­вовала. На этих заводах он досушивался в зоне подготов­ки кольцевой печи. В них процесс досушки практически нерегулируем, что приводит к снижению качества кир­пича и к повышенному выходу брака. На заводах, по­строенных в 1950—1955 гг., спрессованный сырец сушат в туннельных сушилках на печных вагонетках. Длитель­ность сушки 16—24 ч. Конечная влажность 4—6%. Теп­лоносителями являются горячий воздух, отбираемый из зоны остывания туннельных печей, а также их отходя­щие газы. Начальная температура теплоносителя 120— 150° С.

3.4. Обжиг спрессованного сырца.

При обжиге сырца, спрессованного из порошкообразной массы, приходится учитывать своеобразие его структуры, ибо механизм об­разования керамического черепка у изделий пластиче­ского и полусухого прессования неодинаков. Рассмотрим различие этого механизма для случая легкоплавких глин. Структуру свежесформованного сырца пластиче­ского формования, т. е. структуру пластичного глиняно­го теста, в самом схематическом приближении можно представить следующим образом (рис. 103, а). Отдель­ные агрегированные кусочки глины, а главным образом их тощая составляющая часть — кварцевый песок, рас­пределены более или менее равномерно в суспензии коллоидной фракции 1 глины. Дисперсионной средой этой суспензии является водный раствор растворимых солей, содержащихся в глине, а дисперсной фазой—на­ходящаяся в этом растворе во взвешенном состоянии коллоидная фракция глинистых минералов. Эта суспен­зия наполнена более крупными частицами кварца 2 и агрегированными, не распустившимися в воде кусоч­ками глины, которые являются как бы «заполнителями» этой суспензии.

Во время сушки, по мере испарения из сырца влаги, зерна заполнителя сближаются между собой, контактируясь в отдельных точках и гранях, и образуют таким образом скелет высушенного изделия. Суспензия, высыхая, осаждает на скелете свою коллоидную фракцию. Таким образом, зерна заполнителя оказываются покры­тыми сплошной «обмазкой» 3 из коллоидной фракции глины (рис. 103, б). Эта обмазка является наиболее легкоплавкой частью всей керамической массы, так как в ее составе находятся растворимые соли, имеющие на­иболее низкие эвтектические температуры. Важным

в данном случае является и то обстоятельство, что при незначительной общей концентрации этих солей в кера­мической массе местная концентрация их на контактных поверхностях отдельных зерен может достигать сущест­венной величины. По мере нагревания сырца при дости­жении эвтектических температур эта обмазка плавится, образуя стекловидную фазу 4, которая цементирует кон­тактные поверхности отдельных зерен. Кроме того, в образовавшемся жидком расплаве частично растворя­ются поверхностные слои зерен наполнителя, образуя пересыщенные растворы, из которых выкристаллизовы­ваются новые минералообразования, цементирующие скелет в виде кристаллических сростков (рис. 103,в). Жидкая фаза, образующаяся на контактных поверхнос­тях, затекает в трещины и поры и стекает к поверхно­стям частиц, не пришедших еще в контакт, увеличивая тем самым общую величину контактной поверхности.

Очевидно, что количество, состав и состояние жидкой фазы во многом определяют свойства обожженного керамического изделия аналогично тому, как в обычном строительном бетоне его свойства зависят от свойств заполнителя и цементного камня. Так, например, при по­вышенной вязкости и малой подвижности жидкой фазы затрудняются ее перемещение и цементация еще не скле­енных поверхностей, что снижает прочность изделия. На­пряженное состояние стекловидной фазы, аналогично неотожженному стеклу, повышает хрупкость керамиче­ского изделия.

По-иному развивается процесс формирования череп­ка в керамическом изделии полусухого прессования. Его можно представить себе следующим образом. В массе глиняного порошка, поступающего на прессование, име­ются разнородные по влажности агрегированные глиня­ные частицы соответственно различной плотности и раз­личной твердости. Сами агрегированные частицы гли­няного порошка также неоднородны по твердости, так как наряду с пластичной увлажненной массой глинооб-разующих минералов в них содержатся и более крупные зерна тощего материала — главным образом зерна кварца.

В процессе прессования сырца сначала сближаются отдельные агрегированные частицы глины, затем насту­пает их деформация, а в последней стадии прессования более твердые частицы глины вдавливаются в более мяг­кие. Более сухие частицы глины проникают в мягкие увлажненные частицы. Точно так же и твердые зерна кварца вдавливаются в более мягкие агрегированные частицы глины. Возникающие при этом большие силы трения обусловливают прочное сцепление отдельных глиняных частиц в единый агрегированный сросток. Однако в нем отдельные частицы глины все же имеют между собой поверхности раздела, что коренным образом отличает эту структуру от структуры сырца пластического формования, имеющего сплошную массу «коллоидального вяжущего». При полусухом прессова­нии «массив» сырца образуется механическим сближе­нием отдельных зерен керамического порошка, в кото­ром каждое зерно имеет структуру, аналогичную пла­стичному тесту, а в сырце между ними остаются суще­ствовать поверхности раздела, несмотря на кажущееся сильное взаимодействие между зернами порошка при его прессовании.