Если все элементы матрицы Сk+1 окажутся неотрицательными, то Xk - оптимальный план, и на этом процесс заканчивается. В противном случае переходят ко второму этапу.
Второй этап. Цель этого этапа - построить более экономичный план Хk+1. Выбирают наибольший по модулю отрицательный элемент матрицы Сk+1. Пусть это элемент
Прибавляют
Новый план Хk+1 построен. Он является базисным, так как число его ненулевых элементов не изменилось.
Пусть Lk - транспортные издержки, отвечающие плану Хk. Тогда новое значение целевой функции, отвечающее плану Xk+1, находят по соотношению
Так как
Затем производят аналогично (k+2)-ю итерацию.
Поставим в соответствие каждому пункту Ai некоторое число
В базисных клетках cij=
cij=
Алгоритм метода потенциалов
Строим исходный оптимальный план, в котором r=m+n-1 базисных клеток.
Одной из неизвестных
Вычисляем псевдостоимости
Если хотя - бы в одной клетке псевдостоимость > стоимости (
Подсчитываем новые потенциалы.
Предметная область и общая постановка задачи
Объектом данной работы будет отдел крупной торговой фирмы ООО «ТОНВИДЕО»( пер.Доломановский 183) в Ростове-на-Дону, который занимается распределением и сбытом в Ростове-на-Дону инсекцицидное средство «КРА ДЕО СУПЕР» для уничтожение летающих насекомых, которое поставляется в Ростов-на-Дону из Казани (ул 3-я Кленовая 9) железнодорожными путями.
Товар принимается в Ростове на трех складах: Можайская 167(в р-не авто рынка «Алмаз»), Врубова 32 и Доватора 44/3, и уже оттуда распределяется на рынки: рынок «Лидер»(р-н александровка), «Нахичеванский», Ц.Рынок, «Привоз», «Военвед», «Темерник», в которых арендуются небольшие складские помещения специально под донный товар.
Необходимо составить план перевозок товара из трех складов на рынки таким образом, чтобы доставка осуществлялась без лишних затрат для фирмы. Для достижения цели используем транспортную задачу и определим, какие рынки будет обсуживать данный склад. Решим задачу по временному критерию, т.к. перевозки по Ростову осуществляются грузовым автотранспортом и стоимость перевозки рассчитывается от расхода топлива, а топливо расходуется даже если транспорт застрял в пробке.
Итак, задача сводится к тому, что нужно выяснить из какого склада на какой рынок доставка будет осуществлена быстрее, с учетом пробок на дорогах и средней скорости машины 25 км/ч.
Для решения транспортной задачи необходимо знать количество заявок с каждого рынка (для нашей задачи используем количество заявок на 1 неделю), количество заявок равно вместимости складского помещения, т.е. количеству упаковок которые можно поместить на складе.
«Лидер» - 30
«Нахичеванский»-40
«Ц.Рынок»-50
«Привоз»-40
«Военвед»-20
«Темерник»-60
Математическая постановка задачи
Имеются 3 пункта отправления товара Можайская 167 (А1), Врубова 32(А2) и Доватора 44/3 (А3), в которых сосредоточено 90, 80 и 80 упаковок соответственно, предназначенных для доставки, и 6 пунктов назначения: «Лидер» (В1), «Нахичеванский», (В2), Ц.Рынок (В3), «Привоз»(В4), «Военвед»(В5), «Темерник» (В6), которые подали заявки на некоторое количество товара, которое описано выше. Известны время перевозки из каждого склада на каждый рынок.
Требуется составить план перевозок, при котором все заявки были бы удовлетворены и суммарное время перевозок была бы минимальна.
Обозначим xij-количество товара, которое надо отправить из склада на рынок. Тогда наша задача выглядит следующим образом L=
Транспорт перевозит товар из А1 в В1 за 20 минут
Из А1-В1 за 20мин
Из А1-В2 за 25мин
Из А1-В3 за 35мин
из А1-В4 за 50мин
из А1-В5 за 50мин
из А1-В6 за 20мин
из А2-В1 за 25мин
из А2-В2 за 15мин
из А2-В3 за 25мин
из А2-В4 за 35мин
из А2-В5 за 40мин
из А2-В6 за 25мин
из А3-В1 за 50мин
из А3-В2 за 40мин
из А3-В3 за 30мин
из А3-В4 за 10мин
из А3-В5 за 20мин
из А3-В6 за 45мин
Составим матрицу временных затрат (С) и транспортную таблицу.
С=
Таблица 2.3 - Транспортная таблица
пн по | В1 | В2 | В3 | В4 | В5 | В6 | запасы аi |
А1 | 20 | 25 | 35 | 50 | 50 | 20 | 90 |
30 | 40 | 20 | |||||
А2 | 25 | 15 | 25 | 35 | 40 | 25 | 80 |
30 | 40 | 10 | |||||
А3 | 50 | 40 | 30 | 10 | 20 | 45 | 80 |
20 | 60 | ||||||
запасы bj | 30 | 40 | 50 | 40 | 30 | 60 | 250 |
Поставим в соответствие каждому пункту Ai некоторое число