Смекни!
smekni.com

Автоматизированное проектирование станочной оснастки (стр. 2 из 13)

СAD/CAM-системы находят применение в широком ди-апазоне инженерной деятельности,начиная с решения сравнительно простых задач проектирования и изго-товления конструкторско-технологической докумен-тации и, кончая, задачами объёмного геометричес-кого моделирования, ведением проекта, управления распределенным процессом проектирования и т.п. Современные изделия можно создать только с ис-пользованием CAD/CAM-систем на всех стадиях про-ектирования, изготовления и эксплуатации.

Разработка и создание CAD/CAM-систем является достаточно сложным и длительным процессом, тре-бует значительных затрат материальных и людских ресурсов. К сожалению, за последние годы государ-ственная политика по отношению к коллективам, создающим CAD/CAM-системы, резко изменилась. Из -за отсутствия централизованного финансирования практически прекращены новые разработки в этой области. Значительное количество коллективов –разработчиков распалось. В результате, например, среди отечественных машиностроительных CAD-систем поставляемых на рынок, продавалось не более пяти 2D-систем и не более одной-двух 3D-систем. Пол-ностью отсутствовали системы для проектирования в радиоэлектронике, строительстве и архитектуре. В то же время значительные средства расходуются организациями на закупку дорогостоящих зарубежных CAD/CAM-систем.Пользователи на местах оказываются неподготовленными к применению этих систем,и иногда случается,что в одной организации скапли-ваются несколько типов дублирующих друг друга систем,порой практически неэксплуатируемых.

Развитие отечественных CAD/CAM-систем и их широ-кое использование в промышленности позволит су-щественно сократить затраты на закупку таких сис-тем за рубежом и тем самым поддержать собственные

научные разработки в этой области.

2. Методология проектирования станочной оснастки .

2.1. ТРАДИЦИОННОЕ ПРОЕКТИРОВАНИЕ .

2.1.1. Исходные данные .

Разработка конструкции приспособления заключается в постепенном построении эскиза, выражающего идею приспособления, по контуру обрабатываемой детали. При конструировании приспособлений тщательному изучению и анализу подвергают обрабатываемую деталь, станок, на котором планируется оснащаемая операция, способ подвода режущего инструмента и охлаждающей жидкости, средства обеспечения установки детали, удаления стружки и др. Учитывают положение станочника относительно проектируемого приспособления и оборудования, размер партии деталей и планируемую производительность обработки, структуру технологической операции и режимы резания, вес заготовки,способ её загрузки и выгрузки.

В процессе анализа обрабатываемой детали выделяют поверхности, подлежащие обработке в проектируемом приспособлении, поверхности, назаначенные технологическими базами и под зажимы. Изучают геометрическую форму, размеры, координаты взаимного расположения поверхностей, а также требования точности обработки.

2.1.2. Порядок проектирования .

Конструирование функциональных элементов приспо-собления создаётся постепенно по мере аналитичес-кого рассмотрения функциональных поверхностей обрабатываемой детали. При этом на стадии констру-

ирования каждой очередной фукциональной группы элементов осуществляется их увязка с решениями, полученными на более ранних стадиях.

Наиболее общие методические указания по конструи-рованию приспособлений приведены в следующих пунктах:

1. Конструирование установочных элементов.

При анализе технологических баз (установочной,

направляющей, опорной) принимают решения о типах, размерах, пространственном положении и точностном исполнении установочных элементов станочного приспособления. Эти решения фиксирут на чертеже, содержащем изоборажение обрабатываемой детали. Конструкция установочных элементов приспособления зависит от формы, размеров, расположения и точности баз обрабатываемой детали.

2. Конструирование направляющих элементов.

В результате изучения обрабатываемых поверхностей детали принимают решения о конструкции элементов приспособления для направления режущего инструмен-та (кондукторных втулок в сверильных приспособле-ниях, установов в приспособлених для фрезерования и др.)

3. Конструирование зажимных элементов.

Конструкцию зажимных элементов и устройств приспособления определяют при проектировании после анализа формы и размеров поверхностей обрабатыва-емой детали, назначенных технологом под зажим. При этом учитывают силовые факторы, имеющие место в процессе обработки в приспособлении, а также требования производительности и экономичности конструкции.

4. Конструирование корпуса.

Осуществляют на завершающем этапе разработки приспособления. Конструкция корпуса в целом должна объединять все функциональные сборочные единицы и детали, иметь достаточную жёсткость, предотвращающую потери точности обработки детали.

2.1.3. Расчёты .

К основным расчётам можно отнести расчёты зажимных усилий прихватов и различных зажимных устройств, расчётры пальцев на срез, погрешности базирования и экономические расчёты.

Примеры :

а) Расчёт пальцев. Нередки случаи, когда в качестве технологической базы детали использую-тся цилиндрические отверстия (два или одно).

εb ε


Δ

Рис. 1.

При установке детали на один установочный палец, последний снабжается двусторонним срезом (см. рис.1.), что позволяет компенсировать допустимые отклонения размеров между осью отверстия и базовой плоскостью детали и между осью установочного пальца и той же плоскостью.Ширина направляющего пояска b:

b=(D∙Δmin-∑^2)/∑ (2.1)

где D – номинальный диаметр пальца;

∆min – минимальный радиальный зазор между

направляющим пояском и стенкой отверстия;

∑=δ+δ’ – величина возможного смещения отверстия

относительно установочного пальца;

δ – допуск на размер от базовой плоскости до оси

отверстия детали;

δ’ – допуск на размер от базовой плоскости до оси

срезанного пальца.

При установке на два пальца один из них выполняется срезанным.В этом случае компенсируются допустимые отклонения размеров между осями отверстий детали и осями установочных пальцев приспособления. Ширина направляющего пояска b тогда будет определяться так:

b=(D∙Δmin-(∑-Δ’min)^2)/∑-Δ’min

где ∑=δ+δ’ – величина возможного смещения

отверстий относительно установочных

пальцев за счёт допусков на межцентровые

расстояния(на детали δ и в

приспособлении δ’);

Δ’min – минимальный радиальный зазор между стенкой

отверстия и цилиндрическим пальцем,

выбираемый в зависимости от требуемой

точности установки и технологических

факторов и обеспечивающий лёгкость

посадки.

Наибольший перекос детали вследствие имеющихся зазоров между установочными пальцами и отверстиями определяются по формуле:

Sin α =( αo+αn+2Δmin +α’o+α’n+2Δ’min)/2L (2.2)

Где αo , α’o – допуски на отверстия соответсвенно

под срезанный и цилиндрический пальцы;

αn , α’n – допуски на пальцы (срезанный и

цилиндрический).

В направлении линии центров погрешности установки составляют:

С’= α’o+α’n+2Δ’min

С = С’+2δ

Приведённые выше зависимости показывают, что точность установки можно повысить путём замены цилиндрического жёсткого пальца самоцентрирующимся разжимным.При этом получим:

С’= 0

С = 2δ

Sin α= (αo+αn+2Δmin)/2L

Для ещё большего увеличения точности установки детали целесообразно иногда делать самоцентри-рующимися оба пальца.