Уравнение разомкнутой системы
. .Уравнение замкнутой системы:
.Рис.8 Упрощённая блок-схема первого канала
Запишем окончательную передаточную функцию разомкнутой системы.
; ; .Так как
, то имеем колебательное звено. Учитывая что , можно пользоваться асимптотическими ЛЧХ колебательного звена, колебания будут малы.Находим сопрягающую частоту
; .На рис. 9 представлены ЛЧХ нескорректированного первого канала.
Рис.9 Нескорректированные ЛЧХ первого канала
По ЛАЧХ видно, что нескорректированная система первого канала устойчива, но предъявленные к систем требования по качеству не выполняются. Кривая ЛАЧХ пересекает ось абсцисс на очень низкой частоте, вследствие чего система имеет очень высокое время регулирования. Путём моделирования нескорректированной системы в среде Matlab было установлено, что время регулирования составляет порядка 15 секунд.
Введём в исследуемую систему корректирующие звенья. Рассчитаем их методом синтеза последовательной коррекции. Найдём желаемую частоту среза, исходя из заданных времени регулирования и величины перегулирования.
Желаемую ЛАЧХ построим исходя из следующих соображений. Среднечастотный участок желаемой ЛАЧХ образуется асимптотой с наклоном
, проводимый так, чтобы она пересекала ось частот при . Этот участок проводится влево и вправо до достижения модулей, равных по крайней мере . Высокочастотную область можно пустить параллельно исходной ЛАХ. Низкочастотная область желаемой ЛАЧХ также должна по возможности повторять нескорректированную ЛАЧХ.Построенная асимптотическая ЛАЧХ находится в приложении к пояснительной записке.
После построения желаемой ЛАЧХ и ЛФЧХ можно строить ЛАЧХ и ЛФЧХ коррекции, исходя из следующих соотношений:
; ; ; .Ниже представлена вычисленная передаточная функция коррекции.
.На рис. 10 показаны ЛЧХ скорректированного первого канала.
Рис.10 ЛЧХ первого канала
Добавляем коррекцию к уже имеющейся системе, и, для получения переходного процесса, смоделируем её в программе Matlab.
На рис.11 показан переходной процесс для первого канала исследуемой системы.
Рис. 11 Реакция на единичный скачок первого канала
Было установлено:
; .Таким образом, можно сказать, что скорректированная система удовлетворяет всем предъявленным требованиям по качеству и быстродействию.
Рассчитаем корректирующие звенья для первого канала. По виду передаточной функции коррекции определяем, что нам потребуется две одинаковых дифференцирующих цепочки. Также необходимо включить последовательно с ними некоторое количество усилителей, коэффициент усиления которых мы найдём позднее.
Схема пассивного дифференцирующего звена показана на рис.12.
Рис.12 Схема пассивного дифференцирующего звена
, ( ),где,
- коэффициент передачи дифференцирующего звена. ; .Пусть
, тогда , , ; , ; .Рассчитаем дополнительный коэффициент усиления, требуемый для сигнала, ослабленного дифференцирующим звеном
.Рассчитаем общий коэффициент усиления рассчитанного регулятора
.На рис. 13 показана схемная реализация рассчитанного регулятора.
Рис. 13 Схема регулятора
Распределим полученный коэффициент усиления по усилителям. Первый усилитель включён по вычитающей схеме, и также будет усиливать сигнал. Второй усилитель включён как повторитель, он нужен только для ослабления влияния второго дифференцирующего звена на первый, это достигается благодаря огромному входному сопротивлению операционных усилителей, на основе которых построены усилители. Третий усилитель представляет собой мощный операционный усилитель с высоким выходным током, достаточным для пуска двигателя.
Распределим вычисленный коэффициент усиления регулятора по двум усилителям
.3.2 Составление структурной схемы второго канала, синтез регулятора.
Применим преобразование Лапласа к полученному уравнению Лагранжа
. .Структурная схема канала 2 показана на рис. 14.
Рис. 14 Структурная схема второго канала
На схеме обозначены:
; ; ; ; ; ; .Подставляем найденные значения в структурную схему.
На рис.15 представлена блок-схема второго канала.
Рис.15 Блок-схема второго канала
На рис. 16 представлена упрощённая блок-схема второго канала.
Рис.16 Упрощённая блок-схема второго канала
Ещё более упростим систему, записав единое уравнение для части системы, замкнутой обратной связью с коэффициентом 8,56. Для этого запишем передаточную функцию
по ( по ).Уравнение разомкнутой системы
. ;