Насыщенный пар из барабана поступает в коллектор I ступени пароперегревателя. Поверхность нагрева 324 м2. Движение пара снизу вверх поперечно-противоточное по отношению к движению газов. Пар, двигаясь по змеевикам пароперегревателя за счет процесса теплопередачи от горячих дымовых газов к стенкам труб пароперегревателя, перегревается и тем самым увеличивает свою кинетическую и потенциальную энергию. Температура пара на выходе с I ступени пароперегревателя (375-400)оС. Затем пар поступает на II ступень пароперегревателя с поверхностью нагрева 270 м2. Пар, нагретый на II ступени пароперегревателя до температуры (455-480)оС, затем поступает на III ступень пароперегревателя с поверхностью нагрева 135 м2. Движение пара в III ступени пароперегревателя сверху вниз, параллельно движению дымовых газов. С III ступени пароперегревателя выходит перегретый пар высокого давления П110 с температурой (512-540)оС и давлением (10.0-11.9) МПа.
Перегретый пар П110 поступает в коллектор перегретого пара высокого давления П110 и распределяется по потребителям:
- на производство мономеров;
- к турбогенератору и далее в коллектор пара среднего давления П25;
- на РОУ 110/25 и далее в коллектор пара среднего давления П25;
- на РОУ-110/15 и далее через охладительную установку в коллектор перегретого пара среднего давления П15.
Сброс давления пара с котлов В-01А,В осуществляется на глушитель открытием электрозадвижек. Кроме того, система защиты котла включает электрозадвижку, установленную на общем паропроводе П110 со сбросом пара в атмосферу через глушитель.
Для контроля качества перегретого пара предусмотрены приборы анализаторы электропроводимости.
В качестве топливного газа для работы котлов используется природный газ с ГРС и метано-водородный газ производства мономеров.
Природный газ поступает в котельную с ГРС в количестве (2000-16000) м3/ч через трубчатый теплообменник, где подогревается паром до температуры (70-90)оС.
Для обеспечения надежного отключения подачи природного газа на каждую горелку, на каждый котел и целиком на котельную, и безопасности в случаях срабатывания автоматической системы защиты (блокировок) котлов или аварийного их отключения со щита управления, на газопроводе смонтированы:
- клапан-отсекатель поз.SCV-01А на газопроводе к запальным;
- клапаны отсекатели поз.UZV-(01-04)А,В на газопроводах к каждой горелке;
Все вышеуказанные клапаны входят в систему автоматической системы защиты котлов, а также в систему автоматического розжига горелок. Клапана, помимо автоматического управления, имеют дистанционное управление.
Каждый котел оборудован четырьмя горелками, расположенными в два яруса на фронте котла. Горелки представляют собой цилиндрическую жесткую конструкцию, наружным фланцем крепящуюся к кожуху воздушного короба, внутренним фланцем - к обечайке амбразуры горелки, образованной разводкой труб экрана. Для прохода воздуха в кожухе горелки выставлен промежуточный фланец, между которым и внутренним фланцем смонтированы поворотные лопатки воздушного регистра. Привод лопаток выведен наружу горелки. Газопровод к котлу разводится к каждой горелке, проходит через отсечные клапаны поз.UZV-01А, поз.UZV-02А, поз.UZV-03А, поз.UZV-04А и ручные газовые клапаны по гибкому соединению, подается в газовый коллектор горелки. От коллектора горелки через фланцевые уплотнения до устья амбразуры проходят газовые стволы, оканчивающиеся распределительными наконечниками. Газ из коллектора по стволам выходит через отверстия наконечников под углом к потоку воздуха и смешивается с ним. Для интенсификации процесса смешения газа с воздухом в зоне амбразуры горелки на центральном стволе горелки расположен лопастной завихритель воздуха.
Каждая горелка оборудована газовым запальным устройством с подводом к ним через блокирующие электроклапаны азота для их продувки, приборами контроля пламени запальника и пламени горелок, гляделками и сервоприводами поворотных лопаток воздушных регистров. Управление отсечными клапанами газа, сервоприводами воздушных регистров и датчики пламени входят в систему автоматики розжига и блокировки котлов.
Для приема газа, пуска и останова горелки газопроводы имеют продувочные свечи, выведенные за пределы корпуса котельной выше уровня крыши.
Розжиг горелок осуществляется от запальных горелок с электроискровым запальным устройством и ионизационным датчиком пламени. Газовые горелки котлов оборудованы фотодатчиками пламени, которые входят в систему блокировки котла для защиты его от загазованности при розжиге горелки или при погасании факела каждой горелки.
Полнота сгорания газа контролируется в отходящих газах автоматически газоанализаторами.
Воздух, необходимый для горения топливного газа, подается по напорному воздуховоду дутьевым вентилятором В-А-01А с электроприводом. Вентилятор высоконапорный, максимальное давление нагнетания - 700 мм.вод.ст.
Воздух засасывается с улицы или помещения котельной, что определяется положением переключающих шиберов на шахте всаса, проходит калорифер подогрева воздуха В-Н-02А, где нагревается в холодное время до температуры (15-30)оС теплофикационной водой. Воздух после подогревателя и регулируемого направляющего аппарата подается на всас рабочего колеса вентилятора. Положение лопаток направляющего аппарата, в зависимости от нагрузки потока и расхода газа, изменяется сервоприводом, входящим в систему автоматического регулирования нагрузки котла.
Нагрев воздуха до температуры 250 оС поз.B-TRA-13A, нагнетаемого вентилятором в топку, производится за счет тепла уходящих дымовых газов в регенеративном воздухоподогревателе (РВП) В-Н-01А.
РВП представляет собой вращающийся в вертикальной плоскости ротор, состоящий из набора пластин специального профиля, образующих узкие каналы. Попеременно, при вращении ротора, по каналам проходят горячие газы и нагревают пластины ротора, а затем воздух, которому пластины отдают тепло. Поверхность нагрева РВП составляет 850 м2.
Температура дымовых газов на входе в РВП - (330-370) оС, на выходе - (155-180) оС.
На одном валу с электродвигателем установлен пневмодвигатель, который включается автоматической системой включения резерва, путем открытия электроселеноидного клапана на линии подачи сжатого воздуха при отключении питания основного электродвигателя. Если в течение двух минут РВП не будет вращаться, то произойдет срабатывание блокировки системы аварийной защиты котла.
Система смазки подшипников – «в масляной ванне».
После РВП воздух поступает на воздушный распределительный короб котла и из него через лопатки регистров горелок в каждую горелку котлов, где его поток смешивается с газом, выходящим из газораспределительных сопел. Постоянное соотношение газа с воздухом поддерживается регулятором соотношения. Производительность котла регулируется как изменением количества газа и воздуха, так и числом работающих горелок. Полнота сгорания газа контролируется и обеспечивается автоматическими газоанализаторами на СО и О2 в отходящих газах и путем коррекции задатчика блока соотношения поддерживается содержание О2 в дымовых газах (1-2) %. Кроме того, косвенный контроль процесса горения осуществляется визуально через охлаждаемые гляделки и по температуре газов по газоходу котла.
Отключение котла от общего газохода осуществляется шиберной заслонкой с электроприводом.
Из многих параметров характеризующих процесс, необходимо выбрать те, которые подлежат регулированию и изменением которых целесообразно вносить регулирующее воздействие. Для этого необходимы результаты анализа целевого назначения процесса. Исходя из результатов анализа, выбирают критерий управления, его заданное значение и параметры, изменением которых наиболее целесообразно на него воздействовать. Последнее осуществляется на основе статических и динамических характеристик процесса, дающих представление о взаимозависимости параметров.
Показателем эффективности работы водогрейного котла является температура прямой воды. На нее действуют следующие возмущения:
·расход воды через котел;
·расход топлива;
·расход воздуха;
·разряжение;
·температура обратной воды.
Стабилизировать, т.е. устранить все возмущения нельзя, т.к. расход топлива, расход воздуха и разряжение взаимосвязаны. Устранить можно только одно возмущение – расход воды через котел. Расход воды стабилизируется при помощи подпитки обратной воды химически-очищенной водой. Кроме того, температура прямой воды должна изменяться в зависимости от температуры наружного воздуха. Анализируя эти возмущения, можно прийти к выводу, что экономически целесообразным будет использование в качестве регулирующего воздействия изменение подачи топлива. Целесообразно использовать каскадно-связанное регулирование с главным регулятором. Он воспринимает изменение температуры наружного воздуха и температуры прямой воды, т.е. в общем коллекторе. Кроме того на регулятор топлива подается сигнал от датчика температуры воды за котлом и от датчика температуры обратной воды. Таким образом, подача топлива изменяется в зависимости от температуры наружного воздуха, температуры в общем коллекторе, температуры воды за котлом и температуры обратной воды. Воздух должен подаваться в таком количестве, чтобы обеспечить полное сжигание топлива. Если воздуха недостаточно, то кроме неполноты сжигания, т.е. экономических потерь будет загрязнение атмосферы. Если воздуха будет избыток, то будет унос тепла в трубу. Таким образом, необходимо регулировать соотношение "топливо-воздух". Топливо может идти разного качества, и расчетный коэффициент соотношения может оказаться не оптимальным. Для повышения качества необходимо контролировать полноту сжигания топлива по содержанию кислорода в дымовых газах. Таким образом, регулятор воздуха будет изменять подачу воздуха в зависимости от расхода топлива, расхода воздуха, с коррекцией по содержанию кислорода в дымовых газах. В данном проекте изменение расхода воздуха затруднительно, так как сечение воздуховода прямоугольное. Тогда регулирование ведется по косвенному параметру – давлению воздуха.