Смекни!
smekni.com

Автоматизированный электропривод передвижения тележки мостового крана (стр. 3 из 4)

Произведём проверку выбранного двигателя по нагреву, с использованием метода средних потерь, суть которого заключается в вычислении средних потерь двигателя за рабочий цикл и сравнения их с потерями двигателя при работе в номинальном режиме:

(23)

Суммарные потери в асинхронном двигателе:


; (24)

Постоянные потери в номинальном режиме:

(25)

Номинальные потери двигателя определяются как:

(26)

Переменные потери в номинальном режиме, с учетом намагничивающих потерь:

(27)

где

При частотном способе регулирования скорости асинхронного двигателя постоянные потери определяются следующим выражением:

(28)

Считая, что:

, определим постоянные потери в двигателе для каждого интервала рабочего цикла:

Переменные потери:

Ток статора определяется по формуле:

(1)

Приведенный ток ротора определяем по формуле:

(2)

Определим токи ротора для каждого интервала рабочего цикла

Подставим уравнение (1) в (2), получим расчетную формулу для определения переменных потерь для каждого интервала рабочего цикла:

(3)

Суммарные потери в асинхронном двигателе для каждого интервала рабочего цикла:


Средние потери двигателя за рабочий цикл равны:

(4)

коэффициент, учитывающий ухудшение вентиляции.

=0,5 – коэффициент ухудшения вентиляции при неподвижном роторе.

ti-время i-го интервала.

Сравним средние потери двигателя за рабочий цикл с потерями двигателя при работе в номинальном режиме:


(33)

Таким образом, перегрузка двигателя составляет менее 10%. Следовательно, двигатель удовлетворяет требованиям по перегрузке.

2. Выбор системы управления

2.1 Технико-экономическое обоснование

По кривым на рис. 1.3 [2] (с. 12) определяем, что для скорости передвижения тележки V=0.68 м/с и точности остановки v=20 мм требуется обеспечить диапазон регулирования D=1:10.

Данному диапазону и установленной мощности электродвигателя удовлетворяют следующие системы управления [2] (табл. 15.2, с. 254):

- ТП-ДПТ: система тиристорный преобразователь – электродвигатель постоянного тока;

- КИ-АДФ: силовой контроллер с импульсно-ключевым регулированием скорости – асинхронный двигатель с фазным ротором;

- ПЧИ – АД: система преобразователь частоты инверторного типа – асинхронный двигатель с короткозамкнутым ротором;

С точки зрения удельной стоимости (для мощности 2…5кВт) все системы занимают равные положения, но сравнивая массогабаритные показатели и степень сложности исполнения системы, предпочтение получает система КИ – АДФ.

Выбор вида электропривода подтверждается на основе анализа экономических и массогабаритных показателей. Проанализируем две системы управления: КИ-АДФ и ТП-Д по методике, изложенной в [1] (т. 1, п.II.1., с. 231).Экономическая оценка производится по формуле:

А=

,

Где

А – показатель затрат, руб.;

P=2,7кВт – номинальная мощность электродвигателя;

Sk=

– число включений за год работы [1] (табл.II.1.3.);

SДОП=

– для КИ-АДФ и SДОП=
– для ТП-Д – износостойкость электропривода [1] (табл.II.1.2.);

T=150 часов – в год [1] (табл.II.1.3.);

NВК=120 – число включений в час [1] (табл.II.1.3.);

g=2,5 – коэффициент, характеризующий приведенные моменты инерции механизмов.

b=1 для КИ – АДФ и b=0,4 для ТП-Д – коэффициент, определяющий потери при пуске, торможении и регулировании скорости.

СДВ – удельная стоимость 1 кВт мощности электродвигателя, руб./кВт

[1] (табл.II.1.4.);

СДВ КИ-АДФ=50 руб./кВт; СДВ ТП-Д=120 руб./кВт;

СУудельная стоимость управляющего устройства на 1кВт мощности двигателя, руб./кВт. [1] (табл.II.1.4.);

СУ КИ-АДФ=10 руб./кВт и СУ ТП-Д=250 руб./кВт.

АКИ-АДФ=

=162+108+16=286 руб.

АТП-Д=

=999+10+6,4=1015,4 руб.

Так как экономические показатели этих двух систем значительно различаются друг от друга, то массогабаритные показатели можно не сравнивать.

Затраты на систему КИ-АДФ меньше, поэтому ей и отдаем предпочтение.

2.2 Расчет параметром двигателя

Критическое скольжение:

, где
-номинальное скольжение.

- синхронная частота вращения;

- номинальная частота вращения;

Тогда:

MH-номинальный момент двигателя;

MH=

Таким образом:

Отношения сопротивлений:

a=

0.264

Сопротивление статора:


Приведенное сопротивление ротора:

.