Рисунок 12 - Врівноваження осьової сили за допомогою змінного торцевого дроселя
У деяких конструкціях одноступеневих насосів робоче колесо кріплять на валу по ходовій посадці, а тильну порожнину з’єднують із вхідною воронкою дроселем, опір якого залежить від положення колеса. При цьому вал утримується від осьових зміщень упорним підшипником.
У більшості конструкцій багатоступеневих насосів особливих заходів щодо зменшення осьових сил не вживають, а діючі на ротор сили врівноважують спеціальними розвантажувальними пристроями.
Найпростішими такими пристроями є розвантажувальні поршні (думіси), що сприймають постійне осьове зусилля, їх виконують циліндровими, ступеневими та з конічними ділянками (рис. 13 а, б, в). Оскільки у процесі роботи насоса осьова сила, діюча на ротор, може значно змінюватися, розвантажувальні поршні доводиться доповнювати упорними підшипниками на порівняно великі залишкові осьові навантаження. Для великих насосів це, як правило, двосторонні упорні підшипники з колодками. На рисунку 14 показана багатоступенева відцентрова машина, у якій осьове врівноваження ротора здійснюється ступеневим поршнем 1 з лабіринтовими ущільненнями 2 та двостороннім упорним підшипником 3 із сегментними самоустановлюваними колодками.
а) б)
в)
Рисунок 13 - Конструкції розвантажувальних поршнів: а - циліндровий; б - ступеневий; в – конічний
У даний час для великих високонапірних багатоступеневих насосів найефективнішим способом урівноваження осьових сил є використовування автоматичних врівноважуючих пристроїв – гідроп’ят. Гідроп’ята (рис. 15) містить жорстко закріплений на валу розвантажувальний диск 5, нерухоме опорне кільце (подушку) 2, послідовно розміщені циліндровий 1 та торцеві дроселі 3 і камеру 4, що розділяє ці дроселі. Повний перепад тиску
на гідроп'яті становить різницю між тиском нагнітання та тиском у камері за гідроп’ятою. Найчастіше ця камера сполучена з вхідним патрубком насоса, тоді - тиск на вході. Частина загального перепаду тискудроселює на торцевому дроселі 3, провідність якого залежить від ширини зазору z, тобто осьового положення ротора. Якщо під дією надмірної осьової сили ротор зміщується вліво, то зазор z зменшується, а тиск
збільшується, відновлюючи рівність сили , діючої на ротор, та врівноважуючої сили , діючої на розвантажувальний диск. Таким чином, гідроп’ята автоматично підтримує осьову рівновагу ротора: .Для нормальної роботи гідроп’яти необхідно, щоб ротор мав вільні осьові переміщення, принаймні у межах можливих змін торцевого зазору, тому на кінцях вала необхідно встановлювати лише радіальні підшипники. Функції упорного підшипника виконує сама гідроп’ята. Дуже перспективне використовування системи авторозвантажування не тільки упорного, але і радіального гідростатичного підшипника.
Рисунок 14 - Відцентрова машина із ступеневим поршнем та двостороннім упорним підшипником
Рисунок 15 – Гідроп’ята з віджимним пристроєм
Задирання на контактних торцевих поверхнях відбуваються найчастіше на не розрахункових, перехідних режимах, при розгоні та вибігу, коли гідравлічна врівноважуюча сила
мала. У зв'язку з цим у насосах, для яких за умов експлуатації потрібні часті пуски та зупинки, встановлюють віджимні пристрої (рис. 15, поз. 6), через яке осьове зусилля пружин передається на ротор та при малих обертаннях зсовує його у бік нагнітання, збільшуючи торцевий зазор у гідроп’яті і тим самим попереджаючи можливі задирання. Віджимні пристрої слід рекомендувати також у насосах з турбоприводом, оскільки процес розгону та зупинки приводної турбіни відбувається повільно.Температура перекачуваної рідини у камері гідроп’яти підвищується у порівнянні з температурою на вході за рахунок енергії в'язкого тертя у зазорах та гідравлічних втрат у проточній частині насоса. У режимах малих подач, коли значна частина потужності, споживаної насосом, втрачається на нагрівання рідини, підвищення температури може скласти 10-15 °С. У випадку високої температури на вході, наприклад у живильних насосах, температура в камері після торцевого зазору може досягти критичного значення, при якому тиск у камері менше відповідного тиску насиченої пара. У результаті, перш за все у торцевому зазорі п'яти, може відбуватися більш менш інтенсивне пароутворення, що зменшує несучу здатність та збільшує небезпеку виникнення задирання в торцевому дроселі.
а) б)
Рисунок 16 – Гідроп’яти з додатковим циліндровим дроселем (а) та з внутрішнім розташуванням торцевого дроселя (б)
Щоб запобігти пароутворенню, тиск у камері після торцевого зазору необхідно підтримувати вищим, ніж тиск насиченого пару при максимально можливій температурі та при мінімальному тиску в лінії відведення витоків з гідроп’яти. Найпростішим засобом підвищення тиску в камері є використовування додаткового циліндрового дроселя між торцевим зазором та лінією відведення витоків (рис. 16 а). У деяких випадках гарантований підпір після торцевого зазору створюють, змінюючи послідовність торцевого та циліндричного дроселів (рис. 16 б).
На підставі наведеного огляду можна запропонувати класифікацію (рис. 17) засобів зменшення та врівноваження осьових сил, діючих на ротори відцентрових насосів. Найекономічнішими та надійнішими є системи автоматичного урівноваження.
Гідростатична сила у торцевому зазорі з малою конусністю
Для обчислення осьової сили, що діє на розвантажувальний диск, необхідно знати закон розподілу тиску в торцевому зазорі. Щоб врахувати можливі похибки виготовлення та деформації диска, розглянемо вісесиметричний торцевий зазор з малою конусністю, що характеризується кутом υ (рис. 18). Течію будемо вважати радіальною, тобто впливом окружних швидкостей знехтуємо. Таке припущення при перепадах тиску понад 2 МПа виправдовується результатами експериментів [11]. Крім того, знехтуємо місцевими втратами тиску на вході та на виході з торцевого зазору. Похибка кількісних результатів, пов'язаних із таким допущенням, значно менше, ніж похибка при визначенні осьової сили Т, яка діє на ротор.
Падіння тиску на подолання опору тертя на кільцевому пояску шириною dr з місцевим торцевим зазором z можна виразити через швидкісний напір, користуючись формулою для плоского каналу
,де v - радіальна швидкість на радіусі r;
- коефіцієнт опору тертя торцевої щілини у автомодельній облості турбулентної течії; 0,06.Рисунок 18 - Розрахункова схема торцевого зазору з малою конусністю
З рівняння нерозривності vzr=vmzmrm можна виразити швидкість v через швидкість vm на середньому радіусі. Враховуючи також лінійну зміну зазору по радіусу:
отримаємо
,де
Втрати на тертя на ділянці від r2 до r