Смекни!
smekni.com

Автоматичні рівноважні пристрої як безконтактні ущільнення (стр. 8 из 10)

Оскільки А, Y, Y1 незалежні, то густина вірогідності випадкової функції

буде

де


Функція розподілу радіального зазору

де

- інтеграл вірогідності.

Врівноважувану силу вважатимемо стаціонарною випадковою функцією з густиною вірогідності, що відповідає нормальному закону розподілу,

де

і
- математичне очікування і середнє квадратичне відхилення врівноважуваної сили.

Функція розподілу сили

Використовуючи функції розподілу, за формулою (34) одержимо функцію вірогідності безвідмовної роботи:


Як приклад обчислимо характеристики надійності врівноважуючого пристрою живильного насоса. Параметри пристрою: Т=307 кН, l1=18,8 см, r1=7,5 см, r2=12,5 см, r3=15,5 см, r0=r1, p1= 19 МПа, математичне очікування безрозмірної врівноважуваної сили

, початкового безрозмірного зазору
. Граничні значення торцевого зазору
, базове значення візьмемо

За наявною статистикою коефіцієнт варіацій для осьової сили та радіального зазору можна взяти таким що дорівнює 0,2. Тоді

За формулою (33) h0=0,094. З графіків, що наведені на рисунку 22, одержуємо: для сталі 30X13
=1,0,
= 0,2
= 0,2,
=0,2,
= 0,04; для хромомолібденової сталі
= 0,2,
=0,04,
=0,04,
= 0,008.

Графік (рис. 23) функції вірогідності безвідмовної роботи F(t) для втулки зі сталі 303X13 має злам кривої при t=t1, відповідній зміні швидкості зростання зазору (рис. 22). Середнє напрацювання, обчислене за формулою (35), склало 9100 годин для сталі 303X13 та 78200 годин - для хромомолібденової сталі. Одержані результати добре узгоджуються з наявними статистичними даними за надійністю розвантажувальних пристроїв [16].

Розглянута методика розрахунку характеристик надійності врівноважуючих пристроїв дозволяє оцінювати вплив тих або інших змін у конструкції вузла, а також може використовуватися як складова частина у розрахунку надійності всієї машини на стадії її проектування.

Виведення рівняння динаміки системи. Рівняння осьових коливань ротора

Якщо вважати ротор жорстким тілом, то рівняння його осьових коливань має вигляд [17]


де с - коефіцієнт демпфірування; k - жорсткість віджимного пристрою; m - маса ротора.

Вводячи безрозмірні змінні, одержимо

де

У операторній формі

а передаточна функція об’єкта регулювання

(36)

Рівняння руху рідини

Розглянемо для простоти конструкцію без додаткового дроселя

та без конусності
Перепад тиску на врівноважуючому пристрої у несталому режимі витрачається на подолання гідравлічного опору (активний опір) та на прискорення протікаючої рідини (індуктивний опір):


де L, R - коефіцієнти індуктивного і активного опорів.

Позначимо

(n=1,2).

Тоді для циліндрового і торцевого дроселів (р3 = 0)

, (37)

а із закону зміни кількості руху

Якщо виключити перепади тиску, одержимо коефіцієнти індуктивного опору

Оскільки

, тоді надалі знехтуємо інерцією рідини у торцевому зазорі

Витрати виражаються через втрати тиску на подолання активних опорів:


(38)

де коефіцієнти гідравлічних втрат

визначені формулами (14) та (16). У сталому режимі

Для циліндрового зазору, користуючись виразами (37) та (38), одержимо нелінійне рівняння стосовно тиску

Тиск на вході вважатимемо постійним: p1 = рб, тому, переходячи до рівняння у варіаціях, одержимо

де

Після диференціювання за часом варіації витрати, угрупування членів та переходу до безрозмірних змінних матимемо (знаком варіації знехтуємо)

Де


. (39)

У операторній формі

(40)

Якщо враховувати інерцію рідини у торцевому зазорі, то аналогічним чином одержимо рівняння першого порядку стосовно тиску

:

де

Рівняння балансу витрат

Беручи до уваги зміни об’єму камери V при осьових зсувах диска і стиснення в ній рідини при зміні тиску р2, можна записати


де

Е - модуль пружності рідини.

Перейдемо до рівняння у варіаціях, використовуючи одержані вище варіації витрат:

(41)

де

(42)

- значення рівноваги торцевого зазору, яке визначається із статичного розрахунку за формулою (27).

З урахуванням формул (28) та (29)


Якщо взяти до уваги деформації диска, то у правій частині рівнянь балансу витрат потрібно додати ще один член, який враховує швидкість зміни об’єму камери через деформації диска: