Измерения на станках выполняются уже давно — с тех пор, как на них стали устанавливать измерительные датчики компании Renishaw. Диапазон этих измерений ограничен стандартными циклами, которые «зашиты» в системе ЧПУ. Такие измерения программируются вручную, и информация об их результатах считывается с экрана системы ЧПУ. Для использования PowerINSPECTOMV необходимо подключить к системе ЧПУ компьютер, который будет принимать обратные сигналы от датчиков Renishaw и системы ЧПУ, производить их соответствующую обработку и готовить отчет в заданной форме.
Новая технология и новые датчики во многих случаях позволяют отказаться от шаблонов.
Работа организована так, что одно место PowerINSPECTOMV в состоянии осуществлять периодический контроль обработки на нескольких станках одновременно. Передача программ на станки и результатов контроля обратно производится по сети. Измерения на станке с помощью PowerINSPECTOMVне заменяют измерения на стационарных координатно-измерительных машинах, но значительно расширяют возможности промежуточного контроля изделий.
Особенно интересно применение PowerINSPECTOMV для поднастройки положения деталей, что может быть необходимо при доработке деталей после переустановки или при обработке деталей, не имеющих выращенных базовых элементов, — например лопаток, компрессорных колес, криволинейных тонкостенных деталей с аэродинамическим профилем и пр. Измерив деталь, PowerINSPECT может определить, насколько она смещена и повернута относительно заданного положения в программе обработки. Имея эти данные, можно легко скорректировать положение системы координат через стойку ЧПУ. Такой метод можно назвать программным базированием — положение детали относительно базовых точек станка определяется не установочными элементами приспособления, а результатами замера по программе.
Принцип работы лазерного сканера следующий: он крепится вместо контактного щупа и подключается к КИМ мобильного или стационарного типа, либо к станку с числовым программным обеспечение (ЧПУ).
Внутри сканера располагается цифровая видеокамера и диодный лазерный излучатель с модуляцией сигнала. Лазерный луч формирует строку различной длины в зависимости от модели, а затем гаснет до начала следующей. Максимальное количество строчек в секунду 60.
Технология сканирования Kreon базируется на методе триангуляции. Угол между камерой и лазерным лучом выбран оптимальным для сканирования. При угле 0° между лучом и измеряемой поверхностью камера не фиксирует излучение строки, подсвеченной лучом лазера на измеряемой поверхности, 90°- оптимальное положение.
Лазерный луч в единичный момент времени образует на сканируемой поверхности светящуюся точку, которая фиксируется матрицей видеокамеры. При формировании лучом лазера строчки на измеряемой поверхности, на матрице фиксируется размытая (градиентная) кривая, которая затем фильтруется по точкам с максимальной интенсивностью свечения. Из этих точек с максимальной интенсивностью свечения формируется облако.
Сканируемый объект
Необработанное видеоизображение
Оцифрованное изображение.
Электроника фильтрует изображение и оставляет только самые "яркие" точки.
За счет калибровки камеры определяется зависимость между видеоизображением и действительной метрической системе координат (UV). В результате создается линия из точек на плоскости
Зная позицию сканера относительно объекта, электроника определяет положение точек линии в трехмерной системе координат (XYZ). Собранные плоскости с точками образуют облако точек.
Опыт эксплуатации данного оборудования показывает высокую эффективность его применения в следующих областях:
· при проведении контрольно-измерительных работ;
· при проведении пуско-наладочных работ;
· обратный инжиниринг;
· быстрое создание прототипов;
· дизайн;
· мультипликация.
НИИизмерения созданы и выпускаются универсальные приборы и инструменты с цифровым электронным отсчетом, уникальные средства контроля прецизионных зубчатых колес и передач, приборы активного контроля и подналадчики для всех видов финишного станочного оборудования, комплекс приборов для контроля ответственных деталей колесных пар железнодорожного транспорта, приборы для контроля резьб и параметров труб нефтяного сортамента, средства контроля деталей компрессоров, подшипников, ряд специализированных приборов для различных отраслей машиностроения.
Рис. 1
На базе различных измерительных систем разработана гамма современных цифровых универсальных приборов контроля геометрических параметров прецизионных деталей (индуктивные пробки для контроля диаметров, толщиномеры, глубиномеры, штангенрейсмасы). Разработана и поставляется портативная измерительная система с индуктивным преобразователем и автономным питанием, имеющая переключаемые диапазоны измерений от 0,04 до 4 мм и дискретность отсчета 0,01; 0,1 и 1 мкм. Не ее базе создана модифицированная измерительная система для прецизионного измерения линейных размеров и перемещений, которая может использоваться в средствах автоматизации технологических процессов, а также для контроля различных параметров деталей в труднодоступных условиях; система допускает эксплуатацию при температурах от -20 до +50 оС (рис.1).
Серьезное внимание НИИизмерения уделяет проблеме метрологического обеспечения производства ответственных резьбовых деталей, особенно сортамента нефтегазового комплекса. В рамках работ по этому направлению разработан комплекс индикаторных приборов для контроля параметров резьбы (шага, высоты и угла профиля, среднего диаметра и конусности резьбы), а также электронные цифровые приборы для контроля диаметров и прямолинейности отверстий труб, пригодные в том числе и для контроля труб погружных штанговых насосов. Созданы также электронные цифровые приборы для контроля конусности калибров-колец (ручной) и для контроля конусности и шага резьбы конических калибров-колец (стационарный). Допускаемая погрешность приборов не превышает нескольких микрон. Результаты контроля обрабатываются, запоминаются, выводятся на табло электронного блока и на печатающее устройство. Модули контролируемых зубчатых колес 7-12 мм, диаметры 126-1000 мм. Разработаны также две модификации цифровых нормалемеров, предназначенных для определения отклонения и колебания длины общей нормали цилиндрических зубчатых колес внешнего зацепления. Предел измерения длины общей нормали 0…120 или 50-320 мм.
В последние годы создано новое поколение приборов активного контроля, предназначенных для управления процессом обработки валов, отверстий и плоских поверхностей с непрерывной и прерывистой поверхностью на кругло- и внутришлифовальных станках-автоматах, полуавтоматах и станках с ЧПУ, отличающееся от ранее выпускавшихся существенно более высоким техническим уровнем (повышение в 1,5-2 раза быстродействия и точности, уменьшение в 2-3 раза габаритов, массы, энергопотребления, расширение технологических возможностей, использование единого для всей гаммы приборов активного контроля одной и той же модели малогабаритного электронного отсчетно-командного устройства на микропроцессорной базе). Гамма включает 7 основных моделей приборов с различными исполнениями и закрывает контроль деталей при всех видах шлифования, кроме бесцентрового. Диапазон размеров контролируемых валов и отверстий — 2,5…200 мм, дискретность цифрового отсчета — 0,1 — 1 мкм.
Рис. 2
Разработаны также подналадчики (рис.2) для круглошлифовальных бесцентровых, токарных, сверлильно-фрезерно-расточных станков с ЧПУ, обрабатывающих центров, гибких модулей и систем, унифицированные по механической и электронной части с приборами активного контроля.. Подналадчики обеспечивают контроль внутренних и наружных размеров при изготовлении деталей и выдачу в систему управления станками информации о необходимой подналадке оборудования.
Для контроля диаметра колес по кругу катания колес после их обточки на токарном станке создан специализированный прибор (рис.3), позволяющий контролировать колеса диаметром 800…1200 мм. В приборе используется угловой фотоэлектрический преобразователь. Результаты измерений обрабатываются, запоминаются и выводятся на табло электронного блока.
Рис. 3