Смекни!
smekni.com

Акустическая эмиссия при катодном наводороживании малоуглеродистых сталей и титановых сплавов (стр. 4 из 5)

7. В аналого-цифровых системах АЭ возможно использова­ние прямого вычитания сигналов помех из всей совокупности зарегистрированных сигналов АЭ. Для этого производится предварительная запись сигналов помех в конкретных условиях ра­боты нагружающего оборудования и действия других видов помех.

4. Методика электролитического наводороживания металлических образцов.

Для объяснения явлений, связанных с наводороживанием металла катода в растворах электролитов под действием стимуляторов и ингибиторов наводороживания, более продуктивным пока является рассмотрение процесса выделения водорода на основе обычных классических представлений о нескольких возможных стадиях общего процесса выделения водорода, определяющих кинетику процесса. Таких стадийных процессов рассматривают обычно три:

1. Разряд гидратированных ионов водорода электронами, вылетающими из металла – реакция Фольмера Н+∙ aq + e(Me)→H-Me. Образующиеся атомы водорода адсорбируются на поверхности металла катода.

2. Молизация адатомов водорода в молекулы – реакция Тафеля Над + Над→Н2. Возникающие таким путем молекулы водорода удаляются с катода путем диффузии в раствор (при малых плотностях тока) и в виде газовых пузырьков.

3. В некоторых случаях возможно удаление адатомов водорода с поверхности катода путем электрохимической десорбции:

Над + Н+∙ aq + e(Me)→Н2.

Количество серной кислоты в растворе не меняется. Однако при использовании стимуляторов и ингибиторов, реакции, происходящие при электролизе, существенно меняются.

В настоящей работе наводороживание проводилось в электролитической ячейке в однонормальном растворе серной кислоты с добавлением тиомочевины (стимулятор наводороживания). В качестве анода использовалась свинцовая пластина, катодом служил исследуемый образец.

Приборы:

1. Прибор акустико-эмиссионный АФ-15.

2. Источник тока Б5-46.

3. Вольтметр В7-21.

4. Акустический датчик.

5. Назначение прибора АФ-15.

Прибор предназначен для проведения исследований и контроля механических свойств различных объектов (образцы конструкционных материалов, сосуды давления, детали и узлы машин и механизмов, например, атомной энергетики, судостроение, авиаций) по информативным параметрам сигналов АЭ.

Прибор обеспечивает прием сигналов АЭ по двум каналам и одновременную регистрацию не менее четырех информативных параметров: амплитуда, скорость счета, сумма осцилляций, активность, сумма событий, разность времен прихода, форму и длительность импульсов АЭ на графопостроителях, анализаторов импульсов, цифропечатающих устройствах и Микро-ЭВМ.

6. Источники акустической эмиссии в металлах.

На современном этапе развития АЭ исследований можно вы­делить следующие основные источники АЭ, действующие на разных структурных уровнях в металлах:

1. Механизмы, ответственные за пластическое деформирование:

процессы, связанные с движением дислокаций (консерва­тивное скольжение и аннигиляция дислокаций, размножение дислокаций по механизму Франка-Рида; отрыв дислокацион­ных петель от точек закрепления и др.);

зернограничное скольжение;

двойникование.

2. Механизмы, связанные с фазовыми превращениями и фазовыми переходами первого и второго рода:

превращения полиморфного типа, в том числе мартенситные;

образование частиц второй фазы при распаде пересыщен­ных твердых растворов;

фазовые переходы в магнетиках и сверхпроводниках;

магнитомеханические эффекты из-за смещения границ и

Таб.1.1. Параметры сигналов АЭ для некоторых источников

Вид источника АЭ Амплитуда или энергия импульса АЭ, Па или Дж Длительность сигнала, мкс Ширина спектра сигнала, МГц
Дислокационный источник Франка-Рида (10-8- 10-7)G 5- 5*104 1
Аннигиляция дислокации длиной 10-8- 10-6м 4*(10-18- 10-16) 5*10-5 102
Образование микротрещины 10-12- 10-10 10-3- 10-2 50
Исчезновение двойника размером 10-9м3 10-3- 10-2 104 -
Пластическая деформация объема материала с характерным размером 10-4м 10-4 103 0,5
Энергия тепловых шумов в единичн. полосе частот 4,2*10-21Дж/Гц - до 10
Примечание: G- модуль сдвига

переориентации магнитных доменов при изменении величины внешнего намагничивающего поля.

3. Механизмы, связанные с разрушением:

образование и накопление микроповреждений;

образование и развитие трещин;

коррозионное разрушение, включая коррозионное растрес­кивание.

В таблице 1.1, приве­дены сведения, дающие представление о характеристиках не­которых из этих источников АЭ. Дополнительно, приведены данные об уровне акустических шумов, обусловленных тепло­вым движением атомов.

В поликристаллических материалах появление непрерыв­ной АЭ обычно связывают с пластической деформацией от­дельных зерен поликристалла. В поликристаллической струк­туре из-за неравномерного распределения напряжений пласти­ческая деформация отдельных кристаллов возникает при ма­лой общей деформации, когда металл с феноменологической точки зрения находится в области упругости. Поэтому по сиг­налам АЭ можно судить о появлении неоднородностей и микро­дефектов на начальной стадии деформирования и разрушения материалов.

Практическое использование явления АЭ основано на реги­страции упругой энергии, выделяемой в самом материале кон­тролируемого объекта. Зарождение, перемещение и рост дефек­тов сопровождаются изменением микроструктуры и напряжен­но-деформированного состояния материала. При этом происхо­дит перераспределение упругой энергии, что приводит к излу­чению АЭ-сигналов. Дискретная АЭ возникает при развитии дефектов. Поэтому с ее помощью можно выявить развивающи­еся и поэтому потенциально опасные, с точки зрения катастро­фического разрушения конструкций, дефекты. Этим метод АЭ выгодно отличается от традиционных методов ультразвукового контроля. В связи с этим большая часть экспериментальных и теоретических работ в области АЭ посвящена изучению взаи­мосвязи характеристик АЭ-сигналов с параметрами напряжен­ного состояния и разрушения материалов. Многими авторами предприняты попытки определения функциональных или кор­реляционных связей между параметрами трещин и регистри­руемыми при этом сигналами АЭ.

Не останавливаясь подробно на предпосылках, позволяю­щих получить такие зависимости (в ряде случаев их определя­ют по результатам обработки экспериментальных данных), в табл. 1.2 приведем некоторые из них.

Из представленных зависимостей, по мнению большинства исследователей, наиболее надежно установленной и устойчивой является степенная связь между общим счетом импульсов АЭ и коэффициентом интенсивности напряжений в вершине расту­щей трещины. Величину показателя степени mмногие авторы связывают с размерами зоны пластической деформации в вер­шине развивающейся трещины. Однако, если придерживаться этой точки зрения, то значение параметра mдолжно равнять­ся четырем. Эксперименты дают более широкий диапазон из­менения этого параметра. Установлено, что показа­тель степени mявляется функцией безразмерного комплекса К2Ic\Еn, включающего вязкость разрушения КIc, модуль Юн­га Е и поверхностную энергию n) материала. В зависимости от величины комплекса параметр mдля различных материалов может меняться в интервале от 4 до 10,5 , что хорошо согла­суется с экспериментально наблюдаемыми значениями этого показателя.

Следует отметить также работу [19], в которой приведе­ны результаты тщательных экспериментальных исследований и показано, что сумма пиковых значений амплитуд импульсов АЭ связана линейной зависимостью с площадью трещины, при хрупком разрушении стали 38ХНЗМФА.

7. Практическая часть.

Рис. 1. Поведение скорости счета АЭ при наводороживании титанового сплава ВТ1-0, плотность катодного тока 10 мА/см2; 1- дискриминация 6 dB, 2- дискриминация 8 dB.

Рис. 2. Поведение скорости счета АЭ при наводороживании титанового сплава ВТ1-0, плотность катодного тока 10 мА/см2; 1- дискриминация 10 dB, 2- дискриминация 12 dB.


Рис. 3. Поведение скорости счета АЭ при наводороживании титанового сплава ВТ1-0, плотность катодного тока 10 мА/см2 ; 1- дискриминация 16 dB, 2- дискриминация 20 dB.

Рис. 4. Зависимость скорости счета от времени наводороживания стали 20; 1,2 – закаленные образцы, 3,4 – отожженные образцы;при уровне дискриминации 8dB.