Смекни!
smekni.com

Анализ влияния химического состава и технологии получения на жаропрочность металлов и сплавов (стр. 1 из 6)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ

Чебоксарский институт (филиал)

Доклад

на тему:

АНАЛИЗ ВЛИЯНИЯ ХИМИЧЕСКОГО СОСТАВА И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НА ЖАРОПРОЧНОСТЬ МЕТАЛЛОВ И СПЛАВОВ

Выполнили: студенты 2 курса Иванов С.В., Львов А.

Факультет: автомеханический, Группа А21\05

Научный руководитель:

Чебоксары 2006


ПЛАН

ВВЕДЕНИЕ.. 3

СПОСОБ И РЕЖИМ ВЫПЛАВКИ.. 4

СТАЛИ И СПЛАВЫ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ СЛУЖБЫ.. 6

ЖАРОПРОЧНЫЕ ЦВЕТНЫЕ СПЛАВЫ, ИХ СВОЙСТВА И НАЗНАЧЕНИЕ 22

МАГНИЕВЫЕ СПЛАВЫ.. 22

АЛЮМИНИЕВЫЕ СПЛАВЫ.. 23

ТИТАНОВЫЕ СПЛАВЫ.. 24

МЕДНЫЕ СПЛАВЫ.. 25

НИКЕЛЕВЫЕ И КОБАЛЬТОВЫЕ СПЛАВЫ.. 26

ЖАРОПРОЧНЫЕ СПЛАВЫ ТУГОПЛАВКИХ МЕТАЛЛОВ. ИХ СТРУКТУРА, СВОЙСТВА И ПРИМЕНЕНИЕ. 27

ВАНАДИЕВЫЙ СПЛАВЫ.. 30

ХРОМОВЫЕ СПЛАВЫ.. 30

НИОБИЕВЫЕ СПЛАВЫ.. 31

МОЛИБДЕНОВЫЕ СПЛАВЫ.. 31

ТАНТАЛОВЫЕ СПЛАВЫ.. 32

ВОЛЬФРАМОВЫЕ СПЛАВЫ.. 33

Используемая литература.. 36

ВВЕДЕНИЕ

В последние годы в связи с развитием новых специальных областей техники широкое применение получили жаропрочные сплавы, способные без разрушения в течении длительного времени сопротивляться незначительным пластическим деформациям при высоких температурах.

Многообразие современных жаропрочных сплавов связано с различными уровнями рабочих температур и требованиями, предъявляемыми к свойствам сплавов при этих температурах (предела длительной прочности и ползучести, электро - и теплопроводность, свариваемость и др.)

Рабочие температуры современных жаропрочных сплавов составляют примерно 0,5-0,8 Тпл, а в ряде случаев 0,8-0,9 Тпл, время применения изменяется от нескольких часов до нескольких лет, напряжения - от нескольких до десятков Мн/м2.

Многочисленные требования к современным жаропрочным сплавам могут быть удовлетворены лишь тогда, когда изыскание и разработка новых жаропрочных сплавов идут с заметным опережением этих требований.

СПОСОБ И РЕЖИМ ВЫПЛАВКИ

Выплавка жаропрочных сплавов с использованием чистых шихтовых материалов, вакуумного переплава позволяет получать более высокие и стабильные механические свойства.

Электрошлаковый и вакуумный дуговой переплав способствует повышению выносливости, термостойкости и уменьшает дисперсию свойств.

В работе отмечается, что сплав G-34 вакуумной плавки по сравнению с обычной уменьшил дисперсию с 33,2 до 18,2%, т.е. в 2 раза, причем предел ограниченной выносливости образцов вакуумной плавки при 750°С возрос на 20%.

Так же недостаточное раскисление, завышение температуры разливки, загрязнение металла неметаллическими включениями, металлургические дефекты отрицательно сказываются на пределе выносливости и способствуют росту дисперсии. Исследование структуры слитков обычной и вакуумной плавок стали 1Х12Н2ВМФ (ЭИ961) показывает, что металл вакуумных плавок имеет более плотную, однородную макроструктуру без рыхлостей и расслоений по сравнению с металлом открытых плавок.

Вакуумный дуговой переплав снижает загрязненности этой стали оксидными я силикатными включениями 3-4 раза.

Таблица 1

Влияние способа выплавки на кратковременную и длительную прочность жаропрочных деформируемых сплавов.

Методвыплавки Маркасплава Длительная прочность Кратковременный разрыв
t,°C σкгс/ мм² t, ч t,°C σвКгс/ мм² σ ψ
%
Открытая плавка в дуговой печи ХН77ТЮР. (ЭИ437Б) 700 44 153 700 86 20 25

Продолжение таблицы.

Вакуумный дуговой переплав 700 44 157 700 85 20 24
Открытая плавка в дуговой печи ХН70ВМТЮ(ЭИ617) 850 20 82 800 76 4,4 10.5
Вакуумный дуговой переплав 850 20 114 800 80 10 15

При переходе от обычной воздушной плавки к вакуумной происходит увеличение предела прочности до 10%, а увеличение длительной прочности (по времени) в 2 раза; удлинение при этом возрастает в 2-3 раза. Кроме того, заметно снижается содержание газов в металле.

Таблица 2

Механические свойства сплава М-252 в зависимости от способа выплавки

Плавка Тисп,°С
,кгс/ мм²
,кгс/ мм²
,кгс/ мм²
δ,%
На воздухе 650 750 815 95 76 59,7 --31 46,4 21*11,2 -5**-
Ввакууме 650 750815 1109766.8 --33.8 52 26.7* 14.8 --9,5**

* Температура испытания 760° С. ** Температура испытания 730° С.

Характеризуя влияние способа выплавки на кратковременную и длительную прочность жаропрочных деформированных сплавов, отмечается, что вакуумный переплав улучшил жаропрочные свойства сплава ХН70ВМТЮ (ЭИ617) (табл.1).

В таблице 2 даны сравнительные свойства сплава М-252 для лопаток турбин, полученные дуговой и вакуумной плавкой, показывающие преимущества металла вакуумной плавки по всем характеристикам.

Данные 1000-ч прочности по сплавам М-252, Уаспаллой, К-235, GMR-235 также свидетельствуют о преимуществе вакуумной выплавки. Следует подчеркнуть, что механические свойства получаются более высокими при увеличении глубины вакуума.

Сопротивление ползучести при переходе от обычной воздушной выплавки к вакуумной возрастает (по времени) для нимоник 90 на 80%, а для нимоник 105-на 50% при возрастаний удлинения в 4,5 и 2,2 раза соответственно. Термостойкость также возрастает для литейных и деформируемых сплавов при переходе от открытой к вакуумной выплавке, о чем свидетельствуют данные многих исследователей.

СТАЛИ И СПЛАВЫ ДЛЯ ВЫСОКОТЕМПЕРАТУРНОЙ СЛУЖБЫ

Развитие работ в области создания и технологии производства жаропрочных и жаростойких сталей и сплавов во многом определяет прогресс различных отраслей промышленности: авиация, ракетпокосмическая техника, судостроение, тепловая и атомная энергетика, химическое и нефтехимическое машиностроение, приборостроение и др.

В связи с различными условиями эксплуатации рассматриваемых сталей и сплавов (температура, напряжение, среда) анализ состояния вопроса целесообразно провести по группам материалов.

Теплоустойчивые стали.

Теплоустойчивые стали, работающие при высоких температурах до 650°С и давлениях до 250-300 атм, обладая повышенной кратковременной и длительной прочностью, могут работать и в агрессивных средах длительностью от 10 до 100 тыс. часов.

Теплоустойчивые стали, как правило, являются низколегированными: содержание легирующих элементов в них не превышает 4 мас.%, за исключением 12 мас. % хромистых коррозионностойких сталей.

При правильном выборе химического содержания стали и режима термической обработки сталь упрочняется по трем механизмам: 1) фазовый наклеп при y-d-превращении; 2) дисперсионное твердение; 3) упрочнение твердого раствора. В результате формируется оптимальная структура, которая обеспечивает высокие свойства в исходном состоянии и их стабильность в течение длительного времени эксплуатации при высоких температурах.

Легирование современных теплоустойчивых сталей основано на изложенных выше соображениях. Ранее из-за недостаточных знаний по теории легирования, в теплоустойчивые стали в основном вводили молибден или молибден с хромом, причем содержание Мо было неоправданно высоким 1,0-1,5 мас. %. Стали относились к упрочняемым по первому и по третьему механизмам. Типичными представителями этой группы являются стали 15-16М, 15ХМ. Croalloy 2.25C и др.

В середине 50-х годов были разработаны дисперсионно-твердеющие стали, содержащие хром, молибден и ванадий одновременно, причем концентрация молибдена была снижена до 0,25-0,35 мас. %. Введение ванадия в количестве 0,15-0,30 мас. % даже при уменьшенном содержании молибдена достаточно, чтобы получить более высокие свойства, чем в стали с 1 мас. % Мо без ванадия.

Благодаря применению хромомолибденванадиевых сталей теплоэнергетика освоила закритические параметры пара на энергоблоках различной мощности (рис.1)

При использовании агрессивных топлив находят применение стали с повышенным содержанием хрома (10-12 мас. %), которые работают достаточно надежно до 620-650 °С. Упрочнение этих сталей при наличии в них молибдена и ванадия происходит в результате выделения легированного кубического карбида МегзСб и МеС. Карбид Ме2зСб не является таким дисперсным, как карбид ванадия УС, Он выделяется недостаточно равномерно, преимущественно по границам зерен, из-за чего наиболее жаропрочные стали этой группы приходится дополнительно легировать вольфрамом и ниобием в небольших количествах. Вследствие одновременного введения ванадия и ниобия образуются карбиды УС и МЬС, а молибден и вольфрам образуют частицы фазы Лавеса. Таким образом, в высокохромистых сталях упрочнение обеспечивается выделением карбидных и интермсталлидных фаз.

Эти стали обладают высоким комплексом физико-механических свойств, структурной стабильностью и могут надежно эксплуатироваться в течение длительного времени. Хромистые стали, имея меньшую радиационную повреждаемость в нейтронном потоке, могут быть использованы взамен аустенитных хромоникелевых сталей типа Х18Н10Т в качестве конструкционного материала в атомной энергетике.

Для многослойных сосудов высокого давления с рабочей температурой до 450 °С применяется сталь 12ХГНМ. Усовершенствование стали 12ХГНМ (введен ванадий и уменьшены концентрации никеля, молибдена и хрома) позволило использовать ее до более высоких температур - 560°С для изготовления сосудов высокого давления в сварном многослойном рулонированном исполнении. На рис.2 приведены кривые ползучести сталей 12ХГНМ и 12ХГНМФ при температуре