Рисунок 1 – Зависимость устойчивой скорости горения рецептур ТРТ, содержащих бимодальный НА, от давления: AN-5, AN-7, AN-6, AN-4, AN-2, AN-1
На рисунке 1 представлены значения устойчивой скорости горения нескольких рецептур ТРТ, содержащих бимодальный HA (70 % крупной фракции и 30 % мелкой); для сравнения приведены результаты испытания ТРТ НА-7 (системы с двойным окислителем НА + ПХА). Из рисунка 1 видно, что все составы на основе НА имеют меньшую скорость горения и больший ПДД, но также и меньшее значение экспоненты в зависимости скорости горения от давления, чем состав, основанный на двойном окислителе (НА + ПХА). Среди составов на основе НА два состава с добавками (НА-5 с 3 % Mg и НА-6 с 3 % AD) имеют наиболее близкие баллистические характеристики. Большее содержание металлического порошка в рецептуре увеличивает скорость горения (сравните НА-4 с НА-1, хотя эти рецептуры очень мало отличаются), при этом у состава со сферическим алюминием (НА-2) скорость горения наименьшая. Результаты, полученные на составах с разными связующими (полиэтиленгликоль и полипропиленгликоль), сохраняют общую тенденцию в отношении влияния металлического компонента. При изготовлении состава НА-1a, содержащего более мелкий порошок НА (70 % крупной фракции в диапазоне 70¸250 мкм и 30 % мелкой фракции в диапазоне 0¸45 мкм), возникли технологические проблемы. Топливо НА-3, содержащее наноалюминий, показало особенный характер горения (большой твердый остаток Al2O3, напоминающий по форме исходный образец, во всем исследуемом диапазоне давлений 1 ¸70 бар).
На рисунке 2, а показана структура каркасного слоя состава НА-1, а рисунок 2, б подтверждает наличие расплавленного слоя, сопровождающего дефлаграцию НА состава НА-2. Другие детали горения составов на основе НА показаны на рисунке 3, а (состав НА-2) и рисунке 3, б (состав НА-3). Твердые остатки продуктов сгорания также подтверждают физическую картину, предложенную БГТУ: собранные агломераты представляют собой необычно крупные частицы (до 1000 мкм), часто полой конфигурации, как показано на микроразрезанных собранных частицах (состав НА-1) (рисунок 4). Аналогичная морфология наблюдается для состава НА-2, но не для НА-3. Обнаружено несколько газообразных пор, иногда очень маленьких, иногда распространяющихся по всей частице. В частицах накоплено большое количество оксида алюминия и довольно малое количество алюминия.
Системы двойного окислителя НА + ПХА
Удельный импульс и плотность HA меньше по сравнению с широко используемым ПХА, поэтому он не совсем пригоден для ракетных двигателей космических ракетоносителей. Однако предложенная система двойного окислителя позволяет найти компромисс между двумя этими компонентами. Таким образом, долгосрочные цели данной работы состоят в улучшении общего понимания свойств горения ТРТ, основанного на системе двойного окислителя НА + ПХА и включающего в себя металлический компонент, а также в нахождении наиболее пригодных рецептур ТРТ, дешевых и экологически безопасных, для исследования космоса. В качестве эталона на данном этапе исследований взяты характеристики твердотопливных ускорителей системы Ariane-5.
В целом увеличение содержания твердой фракции повышает плотность ТРТ (НА-4, НА-5, НА-6); кроме того, также повышает плотность ТРТ использование окислителя (НА-P) или металлического горючего (НА-3) с большим содержанием мелкой фракции. Более низкие результаты получены на составах с микрометрическим Al (НА-1 и НА-2) ввиду плохих механических свойств соответствующих мешек. Напротив, значительно лучший результат был получен с системой двойного окислителя НА + ПХА – плотность 1,66 г/см3 . Плотность топлива, используемого в ускорителях Ariane-5, равна 1,76 г/см3 , т.е. больше плотности состава с двойным окислителем на 5,5 %.
Замена части ПXA на HA означает и некоторую потерю удельного импульса по сравнению с Ariane-5, НА + ПХА на 2 % (чистый НА на 5 %). Таким же образом уменьшается и номинальная температура пламени: на 24 % для чистого НА и на 12 % для НА + ПХА. Но при замене части ПXA на НА значительно уменьшается загрязнение окружающей среды, так как на 58 % уменьшается образование НСl.
Обширные испытания системы с двойным окислителем (HA + ПXA) показывают, что два окислителя удачно сочетаются в рецептуре ТРТ, проявляя лучшие свои качества: ПХА обеспечивает высокую скорость горения и низкое значение ПДД, а НА снижает стоимость топлива и загрязнение окружающей среды. Плохие характеристики остатков горения ТРТ с НА в значительной степени нивелируются присутствием ПХА в рецептуре топлива. Для смесевых ТРТ с НА, основанных как на чистом НА [21], так и на системе двойного окислителя НА + ПХА [22], была успешно применена классическая теория гранулированного диффузионного пламени [23] с соответствующими изменениями [24]. Эта теория первоначально была разработана Summerfield¢ом для СТТ на основе ПXA и может использоваться для оптимизации состава топлива. Таким образом, система двойного окислителя НА + ПХА имеет такие же характеристики, как одиночный окислитель. Немного уменьшается номинальный удельный импульс и плотность, но значительно уменьшается и загрязнение окружающей среды HCl. Эта общая тенденция сохраняется при использовании в качестве связующих топлива полиэтилен- и полипропиленгликоля.
Фазостабилизированный нитрат аммония
Хотя смешение с ПХА резко улучшает довольно ограниченные баллистические свойства НА, сам этот окислитель, как таковой, не может использоваться в качестве компонента ТРТ из-за своих физико-химических характеристик. В частности, несколько фазовых переходов при температуре окружающей среды и значительная гигроскопичность делают кристаллический порошок НА непригодным для использования в ТРТ. Это хорошо известная проблема привлекает внимание химиков уже длительное время. Существует несколько вариантов ее решения, включая использование специфических добавок, способных стабилизировать фазовые переходы НА в температурном диапазоне эксплуатации РДТТ и одновременно ограничивающих гигроскопичность НА [26]. Эта часть исследования была проведена в сотрудничестве с Южно-Российским государственным техническим университетом, в результате чего получено несколько вариантов фазостабилизированного нитрата аммония (ФСНА).
3. Аммония перхлорат из отходов твердого ракетного топлива
Пиротехнические составы, в особенности композиции содержащие связующие полимеры, неорганические окислители, тонкоизмельченные металлические порошки, регуляторы горения и другие компоненты, используются главным образом в процессе приготовления ракетных и реактивных топлив, дымовых и газовых шашек, осветительных средств.
Наиболее распространенный метод уничтожения таких составов, срок действия которых истек, или их излишков, заключается в сжигании в открытых шахтах. Этот метод относительно безопасен, но его недостаток заключается в сильном атмосферном загрязнении и полном уничтожении топлив, содержащих ценные химические и конструкционные компоненты.
Метод позволяет исключить атмосферные загрязнения и потери ценных компонентов при сжигании составов в шахтах. Этот метод позволяет выделять окислители, металлические порошки топлива и металлические конструкционные компоненты и не требует предварительного извлечения составов из металлических оболочек, в которых они находятся, и дополнительных энергетических затрат на их измельчение. В общих чертах процесс состоит из следующих стадий'
а) разрушения структурной основы связующего полимера путем обработки пиротехнического состава химическими реагентами, обеспечивающими набухание и деполимеризацию, неактивными по отношению к неорганическим окислителям и металлическим составляющим топлива; б) отделение неорганического окислителя и металлических составляющих от разрушенной полимерной основы; в) взаимодействие неорганического окислителя и металлических составляющих после стадии б с неводными растворителями или с жидкостью имеющей плотность, среднюю между значениями плотности неорганического окислителя и металла, при этом жидкость инертна к каждому из компонентов; г) разделение смеси, полученной после стадии в.
Ниже приводится конкретный пример такого процесса. Высокоактивное топливо с содержанием твердых веществ 88 %, содержащее в качестве связующего компонента полибутадиен с концевыми гидроксильными группами, отвержденный изо-форондиизоцианатом, обрабатывается хлористым алюминием и тетрагидрофураном в количестве 1—15%. Смесь кипятят с обратным холодильником в течение 4 ч или выдерживают длительный период, обычно 18—40 ч при комнатной температуре. После растворения связующего агента оставшаяся смесь фильтруется, промывается свежим тетрагидрофураном и высушивается.
Выделение смеси алюминиевых компонентов и перхлората аммония происходит количественно. Обработка смеси водой приводит к образованию раствора перхлората аммония, который отделяется от нерастворившегося алюминия и подвергается перекристаллизации. Порошкообразный алюминий получается в виде, пригодном для повторного использования.
Литература
1. Kondrikov B.N., Annikov V.E., DeLuca L.T. Combustion of Ammonium Nitrate-Based Compositions: I. Mixtures of Ammonium Nitrate with Catalysts and High Explosives: Proceedings of the 29th International Annual Conference of ICT, Karlsruhe, 30 June - 3 July, 1998, Germany. - P. 163.
2. Kondrikov B.N., Annikov V.E., Egorshev V.Yu. et al.Combustion of Ammonium Nitrate-Based Compositions: II. Metal-Containing and Water-Impregnated Compounds// Journal of Propulsion and Power.- 1999. - V. 15. - №. 6. - P. 763-771.
3. Kondrikov B.N., Peila S., Tadi, V., DeLuca, L.T. AN/Mg/AD Ignition by CC>2 Laser Radiation: in 5-ISICP: Combustion of Energetic Materials, K.K. Kuo and L.T. DeLuca, editors, Begell House, New York, USA, 2002. - P. 263 -273.
4. DeLuca L.T., Galfetti L., Severini F. et al. Low-Cost and Green Solid Propellants for Space Propulsion: International Conference on «Green Solid Propellants for Space Propulsion» organized by the European Space Agency (ESA), Sardinia, Italy, 7-8 Jun 04.
5. Taylor J., Sillito G. The Use of Ammonium Nitrate as a Solid Fuel to Provide Gas for Propulsive Purposes: 3rd Symposium (International) on Combustion, 1949. - P. 572 - 579.
6. Kubota N., Katoh K., Nakashita G. Combustion Mechanism of GAP/AN Propellants: 22nd International ICT Conference, Karlsruhe, Germany, 1991.- P. 42.