qи = IUft,
где I– величина тока в импульсе, А; f– частота следования импульсов, Гц; t – длительность импульса, с.
4. Скорость обработки в импульсном режиме (см/с)
V = B (1-k)/(t-tп) = B (1-k) f,
где tп – время паузы между импульсами, с; k – коэффициент перекрытия точек (обычно k = 0,5 – 0,9); В-диаметр зоны обработки (точки).
5. Шаг точек (см) S = V(t+tп), скорость обработки
V= S/(t+tп),
6. Параметром, характеризующим соотношения длительности импульса и времени паузы в импульсном режиме, является скважность цикла
G= t/(t+tп),
7. Наиболее существенным и одновременно наиболее трудноопределяемым параметром электронного луча является его диаметр. При заданных плотностях тока эмиссии с катода, температуре катода и сферической аберрации линзовой системы пучок электронов с максимальным током может быть сфокусирован в пятно минимального диаметра.
d = S0(I/U)3/8,
где S0 – постоянная электронно-оптической системы, вычисляемая эмпирически.
8. Разряжение (мм. рт. ст., Па).
9. Частота автоколебаний: f»Vсв/d.
4. Исследование влияния основных параметров сварки на форму шва и качество сварного соединения
Влияние тока электронного луча на глубину проплавления металла
С целью определения зависимости величины сварочного тока от толщины соединяемых деталей была проведена серия экспериментов. Сварку выполняли с помощью электронно-лучевой установки «Луч-4» на образцах из нержавеющей стали. Полученные зависимости при разных скоростях сварки и при общих остальных параметрах (U = 30 кВ, l= 100 мм, Iф = 100мА).
Из представленных графиков можно сделать вывод, что при увеличении тока электронного луча, глубина проплавления тоже увеличивается.
Влияние удельной мощности электронного луча на геометрию зоны проплавления
В связи с тем, что энергетический баланс процесса электронно-лучевой сварки близок к аналогичному балансу при дуговой сварке, связь параметров электронного луча с характеристиками зоны проплавления можно дать в виде уравнения для секундного объема плавления металла:
0,24 IUhиhт = rVFпрSм, (1)
где Fпр– площадь проплавления,см2; Sм = (сТпл + Lпл) – теплосодержание жидкого металла при температуре плавления, кал/г.
Из этого уравнения следует, что чем выше погонная энергия Q = 0,24 IU/V, тем больше площадь проплавления. Это действительно справедливо для процесса дуговой сварки, который в большинстве случаев осуществляется при q2<q2*. Для электронно-лучевой сварки экспериментально установлено, что обобщенный параметр – погонная энергия Q не является определяющим при количественной оценке процесса. При постоянной погонной энергии можно получить глубину проплавления и 15 и 2 мм. Этот факт следует считать естественным, так как образование кинжального проплавления при электронно-лучевой сварке определяется не только количеством введенной энергии, но, и ее плотностью.
Эффективность процесса проплавления металла электронным лучом определяется величиной теплового КПД hпр= hиhт, где hи – эффективный; hт – термический КПД. Величина эффективного КПД hи при воздействии луча с образованием канала в веществе практически приближается к единице. При оценке эффективности процесса проплавления существенную роль играет величина термического КПД.
Для использования в инженерных расчетах в уравнениях (1) должна быть учтена удельная мощность электронного луча q2.С этой целью произведены эксперименты по электронно-лучевой сварке с постоянной погонной энергией, но разной степенью фокусировки (разной удельной мощностью). Сварку выполняли с помощью электронно-лучевой установки ЭЛУ-9Б с электронной пушкой ЭП-60/10М на образцах из нержавеющей стали размером 500 х 80 х 20 мм.
В первой серии опытов образцами служили две пластины толщиной 10 мм каждая, сварку выполняли встык с зазором. Во второй серии в качестве образцов использовали пластины толщиной 20 мм.
В процессе сварки через каждые 60 мм длины шва изменяли фокусировку электронного луча на 4 мА в диапазоне токов фокусировки от 76 до 100 мА. Таким образом, концентрация мощности при постоянной погонной энергии в процессе наложения сварного шва постепенно увеличивалась, а после достижения максимума уменьшалась. Рабочее расстояние сохранялось постоянным h= 90 мм (см. табл. 3).
Анализ макрошлифов и очертаний зон проплавления показал, что при постоянном значении погонной энергии можно в широком диапазоне изменять геометрию проплавления с помощью только одного параметра режима сварки – степени фокусировки электронного луча. При этом очертание зоны проплавления изменялось от полукруглого до кинжального, а при больших отрицательных значениях степени фокусировки переходило в «клыкообразное». Опыт показал также, что максимуму глубины проплавления соответствует минимальная ширина шва. Зависимость глубины проплавления Н от степени фокусировки электронного луча DIф приведена на рис. 5. Под степенью фокусировки DIф понимают алгебраическую разность токов магнитной линзы при сварке и фокусировке на малом токе луча (2–4 мА): DIф = ±(Iф – I0) – За нулевую точку отсчета принят ток фокусировки Iф = 88 мА.
Характер кривой Н= f(DIф) (рис. 4) Н, свидетельствует, что степень фоку – мм сиповки, соответствующая максимальному проплавлению на данном режиме, зависит от тока луча: с уменьшением тока луча до величины, обеспечивающей максимальное проплавление, DIф стремится к нулю.
Таблица 3. Характеристика экспериментальных очертаний зон проплавления
Параметр | Условный индекс шва | ||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||||
Ток фокусировки Iф, мА. | 76 | 80 | 84 | 88 | 92 | 96 | 100 | ||||||||
Степень фокусировки DIф, мА. | -12 | -8 | -4 | 0 | +4 | +8 | +12 | ||||||||
Коэффициент формы шва,Кф = Н/В. | 2,11 | 4 | 2,45 | 1,46 | 1,0 | 0,72 | 0,56 | ||||||||
Экспер-ная ширина зоны проплавления, мм | 24 | 22 | 21 | 20,6 | 32 | 47 | 59 | ||||||||
Опыт | Ток фокусировки, мА | ||||||||||||||
72 | 76 | 80 | 84 | 88 | 92 | 96 | 100 | ||||||||
№1 |
Влияние изменения рабочего расстояния пушка-деталь на геометрию зоны проплавления