Смекни!
smekni.com

Выбор способа сварки диафрагменной лопатки паровой турбины (стр. 7 из 8)

Это объясняется тем, что давление пара в канале прямо пропорционально удельной мощности луча, а при одной удельной мощности можно получить разную глубину проплавления, т. к. чем меньше скорость, тем больше глубина проплавления. При правильном подборе удельной мощности, мощности и скорости сварки давление пара в канале отвечает условию

Р > (РG + Рs) = rgH + s/r,


где Р – давление пара в канале; РG – давление, обусловленное весом жидкого металла; Рs – давление, обусловленное поверхностным натяжением жидкого металла.

В некоторых случаях, на выходе из канала это условие может не соблюдаться, т.е. возможно захлопывание канала жидким металлом и образование полости (рис. 12).


а б в

Рис. 12. Схема поведения канала при ЭЛС.

а – канал свободен от жидкости; б – отражение волны жидкого металла от хвостовой части ванны; в-захлопывание канала

Еще одним часто встречающимся специфическим дефектом при ЭЛС является отклонение канала проплавления от линии стыка вследствие отклонения луча магнитным полем при сварке сталей с остаточной намагниченностью. Для ликвидации этого дефекта прибегают к предварительному размагничиванию свариваемого изделия.

5. Выбор параметров режима сварки для изготовления изделия

Основные параметры ЭЛУ «Луч-4»

Для правильного подбора параметров режима сварки необходимо основываться на следующих условиях:

- – требуемые геометрические характеристики шва,

- – требуемое качество (прочностное и химическое) шва,

- – технологические возможности ЭЛУ.

Последний пункт является важным критерием для подбора параметров сварки, т. к. они должны входить в предел возможностей данной установки.

Рассмотрим основные параметры ЭЛС типа «Луч-4» в (табл. 5).

Табл. 5. Основные параметры ЭЛС типа «Луч-4».

№ п\п Наименование параметра Норма
1. Максимальные размеры свариваемого изделия, мм.ДиаметрДлина 900840
2. Вакуум, мм рт. ст. 5*10-5
3. Ускоряющее напряжение электронного луча, кВ. 30
4. Ток электронного луча, мА. 450
5. Ход электронно лучевой пушки, мм. Вдоль камерыПоперек камеры 575840
6. Давление охлаждающей воды,/см2. 2–3
7. Потребляемая электрическая мощность, кВт. 8
8. Режим работы. Полуавтоматический
9. Наблюдение за сваркой. Через иллюминатор
10. Обслуживающий персонал, чел. 2

Исходя из этих норм можно подбирать параметры, обеспечивающие выполнение первых двух пунктов условий (см. выше).

Подбор основных параметров ЭЛС для ЭЛУ «Луч-4»

Необходимые параметры для проведения процесса сварки:

1. Ускоряющее напряжение U.

2. Скорость перемещения электронного луча V.

3. Ток луча I.

4. Рабочее расстояние (расстояние от центра фокусирующей системы до поверхности свариваемой детали) l.

5. Ток фокусирующей системы Iф.

Выбор ускоряющего напряжения

Экспериментальные данные (рис. 6,7.) показывают, что ускоряющее напряжение существенно влияет на глубину проплавления: с увеличением ускоряющего напряжения при прочих равных условиях глубина проплавления увеличивается. Это увеличение происходит пропорционально по квадратичному закону.

Для выбора ускоряющего напряжения для сварки диафрагменной лопатки необходимо знать требуемую глубину проплавления, которая данном соединении составляет 12 – 13 мм. При этом необходимо учитывать, что сварка будет производиться на установке «Луч-4», обладающей определенными рамками по выбору данного параметра режима.

Основываясь на этих данных и используя графическую зависимость глубины проплавления от ускоряющего напряжения при постоянных общей мощности и удельной мощности выбираем Uуск = 30 кВ.

Выбор скорости перемещения электронного луча

Для определения скорости перемещения электронного луча воспользуемся экспериментальной зависимостью глубины проплавления от скорости сварки и ускоряющего напряжения (см. рис. 6).

Из предыдущего пункта известно, что ускоряющее напряжение равно 30 кВ. Следовательно, можно определить скорость сварки (рис. 13).


Н, мм

30

10

0 0,3 0,6 0,9 Vсв, см/с

Рис. 13. Зависимость глубины проплавления от скорости сварки и ускоряющего напряжения U = 30 кВ.

Таким образом, принимаем Vсв = 0,3 см/с или равным 20 см/мин.

Выбор тока луча

В исследовательской части работы приведена зависимость величины сварочного тока от толщины соединяемых деталей из стали 12Х13 при трех разных скоростях сварки: 1 – V = 10 см/мин, 2 – V = 20 см/мин, 3 – V = 30 см/мин (рис. 3). В нашем случае, для сварки диафрагменной лопатки, используется V = 20 см/мин (рис. 14). Другие параметры сварки при этом остаются постоянными (ток фокусировки – Iф, ускоряющее напряжение – Uуск, и рабочая длина).

По результатам выбора принимаем Iсв = 100 А. Возможности установки «Луч – 4» позволяют получить такой ток, что не противоречит

3-ему условию по подбору параметров.

Увеличить вероятность правильного выбора сварочного тока можно путем использования еще одной зависимости (см. рис. 5). Как и предыдущая, она показывает зависимость величины сварочного тока от толщины соединяемых деталей из нержавеющей стали, но при постоянном значении напряжения и скорости сварки (рис. 15).

Все эти зависимости справедливы при давлении в рабочей камере 5*10-5 мм рт. ст. Следует помнить, что степень разряжения влияет на рассеяние луча, а значит и на геометрические характеристики шва.

Таким образом, подтвердилась зависимость глубины проплавления от мощности сварки, в которой происходит одновременное увеличение обоих параметров.

Выбор рабочего расстояния

Рабочее расстояние – расстояние от центра фокусирующей системы до поверхности свариваемой детали или просто – расстояние пушка – деталь.

Заглубление в материал фокуса электронного луча может существенно увеличить глубину отверстия. Аналогичный эффект наблюдается и при электронно-лучевой сварке с кинжальным проплавлением, а при сварке диафрагменной лопатки оно таким и является.

При одинаковой погонной энергии на различных рабочих дистанциях пушки и при постоянной степени фокусировки DIф= 0 площади проплавления являются эквивалентными. Таким образом сохраняется неизменность формы проплавления на различных рабочих дистанциях электронной пушки, находящихся в расчетных (паспортных) пределах для данной электронно-оптической системы.

Принимаем рабочее расстояние от пушки до изделия равным 100 мм.

Выбор тока фокусирующей системы Iф

Для нахождения численного значения тока фокусирующей системы Iф, рассмотрим графическую зависимость на рис. 16.


Iф, мА
180

140

100

60

Iф=f(l)

0 25 50 75 100 125 150 l, мм