Смекни!
smekni.com

Выбор технических средств автоматизации химической промышлености (стр. 2 из 4)

Теплоподвод на конечном участке реактора, выбрано давление топлива перед обогревающими горелками. Алгоритм управления клапанами на линиях подвода топлива в начальную зону горелок в зависимости от давления топлива разрабатывают на основе экспериментальных данных. Это позволяет автоматически компенсировать влияние на тепловой режим неконтролируемых возмущений закоксованности змеевика, изменения состава сырья и т. д.

Для пиролизных печей, в которых невозможно изменять температурный профиль смеси путем перераспределения топлива по зонам" обогрева, применяют системы регулирования температурного профиля изменением подачи хладоагента, % качестве которого используют водяной пар или воду. Система регулирования предусматривает регулирование соотношения между расходами сырья и водяного пара в змеевик. Если технологический регламент установки позволяет изменять расход пара в некоторых пределах, то для управления тепловым режимом процесса можно использовать системы, непосредственно изменяющие время пребывания (снижающие его до минимально допустимого). Эту систему регулирования целесообразно применять для печей с сильными перекрестными связями между подачей топлива в горелки и температурой стенки змеевика. Система осуществляет увеличение подачи пара в змеевик (т.е. уменьшение эффективного времени пребывания) до предела, обусловленного ограничениями на интенсивность подвода .тепла к змеевику: максимальной температурой стенки змеевика или максимальным расходом топлива в ода топлива в начальную зону горелок в зависимости способ управления.

На рис. 1 представлена система зонного регулировании подвода тепла к змеевику в многопоточной печи, которая предусматривает управление по усредненной температуре пирогаза на выходе змеевика и но максимальной из совокупности измеренных температур стенки змеевиков. Поверхностные термопары, установленные на стенках змеевиков в конечных зонах радиантной камеры течи, подсоединены к многоточечному потенциометру 11, выход которого связан с искателем 12 максимальной температуры. Выход искателя является переменной величиной, поступающей на вход регулятора 10, задание которому устанавливают с учетом верхнего предела температуры нагрева стенки змеевика. Выходной сигнал регулятора 10 воздействует на клапан 2, остановленный на линии подачи топлива. Таким образом, контур регулирования обеспечивает подвод максимально допустимого количества тепла в конечную зону пиролиза. Количество тепла, подводимого в начальную зону, регулируют с помощью регулятора 9 и клапана 1. В качестве переменной на регулятор 9 поступает сигнал, пропорциональный переднему значению температур пирогаза на выходе змеевиков. Этот сигнал вырабатывается с помощью усреднителя 8. Установку регулятору 9 корректируют по среднему значению расхода бензина, определяемому среднителем 7.


2.Оптические пирометры

Оптические пирометрышироко применяются в лабораторных и производственных условиях для измерения температур выше 800°С. Принцип действия оптических пирометров основан на сравнении спектральной яркости тела со спектральной яркостью градуированного источника излучения. В качестве чувствительного элемента, определяющего совпадение спектральных яркостей в визуальных оптических пирометрах, служит глаз человека. Наиболее распространенным является оптический пирометр с исчезающей нитью, схема которого приведена на рис. 6.26, а. Для измерения температуры объектив / прибора направляется на объект измерения ОИ так, чтобы наблюдатель на его фоне увидел в окуляре 7 нить оптической лампы 4.

Рисунок 2. Схема визуального оптического пирометра

Сравнение спектральных яркостей объекта измерения и нити лампы4 осуществляются обычно при длине волны равной 0,65 мкм, для чего перед окуляром установлен красный светофильтр 6. Выбор красного светофильтра обусловлен тем, что глаз человека воспринимает через этот фильтр только часть спектра его пропускания, приближающуюся к монохроматическому лучу. Кроме топ применение красного светофильтра позволяет снизить нижний предел измерения пирометра. Диафрагмы (входная 3 и выходная 5) ограничивают входной и выходной углы пирометра, оптимальные значения которых позволяют обеспечить независимость показаний прибора от изменения расстояния между объектом измерения и объективом.

Наблюдая за изображением нити лампы на фоне объекта измерения [светлый фон — темная нить (рис. 2); темный фон светлая нить (рис. 2, г)], с помощью реостата изменяют i тока, идущего от батареи Б к нити лампы, до тех пор, пока ярь нити не станет равной видимой яркости объекта измерения. При достижении указанного равенства нить «исчезает» на фоне изображения объекта измерения (рис. 2, в). В этот момент по шкале миллиамперметра тА, предварительно отградированного в значениях яркостной температуры нити лампы Гян, определяют яркостную температуру объекта Гя°. По измеренной яркостной температуре при известном г\ в соответствии с выражением рассчитывают истинную температуру объекта.

Нить оптической лампы выполнена из вольфрама, поэтому но избежание ее возгонки при температурах выше 1400°С, для изменения более высоких температур перед лампой включается ослабляющий или поглощающий светофильтр 2. Благодаря этому светофильтру уменьшается видимая яркость объекта измерения в кратное число раз, что позволяет не перекаливать нить и сохранит! стабильность градуировки пирометра. Оптическую плотность поглощающего стекла выбирают с таким расчетом, чтобы при температурах объекта, превосходящих 1400°С, нить накала нагрева не выше 1400°С. Поэтому обычно в оптических пирометрах имеется две шкалы, одной из которых пользуются при невведенном поглощающем светофильтре, например от 800 до 1200°С, а второй — при введенном светофильтре от 1200 до 2000°С.

Существующие в настоящее время оптические пирометры предназначены для измерения температур в интервале от 800 до 6000 с, и имеют различные модификации с различными пределами измерения. Класс точности оптических пирометров 1,5—4,0.

3.Структура и состав АСУ

Работа автоматизированных систем управления СУ ПСН и СУ спрейера основана на принципах управления технологическими процессами с использованием одного микропроцессорного контроллера, осуществляющего одновременное управление обеими установками в реальном масштабе времени. Для связи между отдельными электронными устройствами системы управления (контроллер, децентрализованная периферия, панель оператора и промышленный компьютер) организованы локальные сети управления MPI и Profibus DP (Европейский стандарт EN 50 170).

Архитектура системы управления построена по двухуровневой схеме:

нижний уровень управления;

средний уровень управления.

Нижний уровень управления (НУУ) включает в себя модули микропроцессорного контроллера SIMATIC S7 - 315 DP с цифровыми и аналоговыми входами-выходами и его децентрализованную периферию (удаленные входы-выходы), объединенную сетью PROFIBUS DP. Оборудование НУУ осуществляет сбор информации с пультов, шкафов и датчиков, ее предварительную обработку и передачу на средний уровень управления, а также выдачу управляющих воздействий на исполнительные механизмы установки в зависимости от алгоритма управления.

Средний уровень управления (СУУ) представляет собой промышленный компьютер SIMATIC RI25P, панель оператора ОР7 и микропроцессорный контроллер SIMATIC S7-315DP объединенные сетью MPI. Оборудование СУУ предназначено для ввода параметров технологического процесса, программного управления, контроля, диагностики и протоколирования хода технологического процесса .

В состав системы управления входят:

шкаф контроллера; шкаф электрооборудования, КИП и А; шкаф компьютерный; пульт управления; -height: 130%"> датчики технологических параметров и электрооборудование на механизмах ПСН и спрейерной установки.

3.1 Управление тепловым режимом ПСН с помощью системы управления на базе микропроцессорного контроллера

Система управления тепловым режимом ПСН реализована на принципах управления технологическим процессом в режиме реального времени на базе микропроцессорного контроллера и предназначена для решения следующих задач:

подготовки и задания переменных технологического процесса и настройки параметров регулирования; управления автоматикой безопасности печи; управления розжигом горелок; регулирования температуры поверхности бочки прокатного валка или температуры печи; регулирования соотношения «газ-воздух»; регулирования давления в рабочем пространстве печи; визуализации, контроля, диагностики и протоколирования хода технологического процесса.

В состав системы управления функционально входят следующие подсистемы:

подсистема измерения технологических параметров; подсистема визуализации, контроля, диагностики и протоколирования; подсистема автоматического регулирования; подсистема автоматики безопасности.

3.2 Подсистема измерения технологических параметров

Подсистема измерения технологических параметров предназначена для сбора и обработки информации от аналоговых и дискретных датчиков технологического процесса.

К контролируемым аналоговым параметрам относятся:

температура газовой среды в трех точках рабочего пространства печи (около торцевых стенок и посередине печи); температура поверхности нагреваемого металла; температура отходящих газов перед дымовым клапаном; температура отходящих дымовых газов после воздушного клапана на дымопроводе; давление в рабочем пространстве печи: расход газа на печь; расход воздуха на печь; положение заслонок газа, воздуха и дымоудаления.