Смекни!
smekni.com

В’язка взаємодія вихорових структур зі зсувною течією (стр. 2 из 4)

Дослідження в рамках теорії пограничного шару (J. K. Harvey, F. J. Perry, T. L. Doligalski, J. D. A. Walker, A. T. Conlisk) коректно описують параметри потоку до моменту відриву потоку від поверхні.

В той же час, експериментальні дослідження (D. Rockwell, B. D. Kothmann, W. R. Pauley, M. Macrorie, D. R. Poling, L. Dadone, D. P. Telionis, T. Shizawa, J. K. Eaton) показують, що крупномасштабні інтенсивні вихрі можуть повністю змінювати структуру пограничного шару, спричинювати місцевій відрив потоку і навіть повністю руйнувати пограничний шар. Для теоретичного аналізу таких складних течій необхідно розв’язувати повні рівняння Нав’є-Стокса.

Те ж саме є справедливим і для течій на твердій поверхні, яка має геометричні неоднорідності досить великого масштабу, тобто такі, які суттєво змінюють розподіл тиску біля поверхні. Експериментальні дані про потоки навколо виїмок, приведені в роботах багатьох авторів, в тому числі у книзі „Управление обтеканием тел с вихревыми ячейками в приложении к летательным аппаратам интегральной компоновки (численное и физическое моделирование)” (під ред. А.В. Єрмишина та С.О. Ісаєва), а також статтях С.О. Ісаєва, В.В. Бабенко, V. Sarohia, D. Rockwell, M. Gharib, A. Roshko, показують, що картина обтікання може суттєво змінюватися в залежності від розмірів виїмки та параметрів зовнішнього потоку. Режим течії може бути як стаціонарним, так і періодичним у часі. В останньому випадку виїмка має впливати на основний потік на досить великій відстані вниз за течією, суттєво змінюючи характеристики пограничного шару.

В той же час, в більшості робіт вивчається потік у власне виїмці, або її безпосередньому околі. Для оцінки впливу присутності виїмок на обтікання поверхні необхідно вивчати поведінку потоку в цілому, включаючи як область навколо виїмки, так і потік за її межами, використовуючи рівняння Нав’є-Стокса.

У другому розділі описується фізична та математична модель для вивчення поведінки потоку в’язкої рідини в присутності твердих границь та інтенсивних великомасштабних збурень, які можуть суттєво впливати на основні характеристики потоку та обтічної поверхні. Описуються основні характеристики чисельних методів для розв’язання основної системи рівнянь та вимоги до розрахункових схем. Обґрунтовується вибір неявної схеми змінних напрямків для чисельного аналізу сформульованої задачі.

Основні рівняння - це нестаціонарні рівняння Нав’є-Стокса, перетворені у плоскому випадку до змінних завихреність - функція течії та знерозмірені відносно швидкості вільного потоку та характерного лінійного масштабу:

(1)

, (2)

де функція течії j та завихреність w визначаються наступним чином:

На границях розрахункової області накладено наступні граничні умови: на вході до області задано незбурений потік, на виході - м’які граничні умови, на границі, що знаходиться у вільному потоку, задано умови “рухомої кришки без тертя", на твердій поверхні - умови прилипання.

В області побудовано прямокутну сітку з вузлами, розміщеними нерівномірно в обох напрямках таким чином, що розрахункові точки згущуються біля поверхні пластини та її кінців.

При дискретизації рівнянь похідні 2-го порядку апроксимуються різницями 2-го порядку, для конвективних членів у рівнянні (1) застосовано направлені різниці як 1-го, так і 3-го порядку. Останні використано у випадку більш високих чисел Рейнольдса та суттєво нестаціонарної поведінки потоку.


Граничні умови прилипання на твердій поверхні задано як:

. (3)

Для запису чисельного аналога другої формули використано як формулу Тома по двом точкам, так і формулу Йенсена по трьом точкам, а також їх комбінацію.

Побудований алгоритм дозволяє досліджувати нестаціонарні течії, або одержувати стаціонарний режим методом усталення як граничний розв’язок.

У третьому розділі побудований алгоритм використано для розв’язку задачі про стаціонарне обтікання пластини, яка знаходиться в потоку в‘язкої рідини паралельно до напрямку основного потоку, при різних значеннях числа Рейнольдса по довжині пластини від 102 до 105. Показано відповідність одержаних результатів даним експериментальних досліджень, а також теоретичного та чисельного аналізу інших авторів. Одержані результати далі використовуються як початкові умови для розв’язку нестаціонарних задач.

Розв’язано також задачу про обтікання пластини з відсмоктуванням рідини через відвідний канал, розташований під різними кутами до пластини, при числах Рейнольдса по довжині пластини 100¸500. Пластина знаходиться на нижній границі розрахункової області. На частині границі перед пластиною та позаду її задано граничні умови симетрії потоку: j=0, w=0.

При чисельному дослідженні одержано стаціонарний режим обтікання. Показано, що в залежності від кута нахилу каналу, інтенсивності відсмоктування, числа Рейнольдса можуть формуватися дві відривні зони - біля нижньої за потоком кромки каналу в основному потоку вище поверхні пластини, і в каналі біля верхньої кромки. Таким чином, структура потоку і параметри пограничного шару в районі каналу суттєво відрізняються від тих, що виникають при моделюванні відмотування через скінчену щілину за допомогою пористої поверхні. Умови існування цих зон при фіксованих двох параметрах і змінному третьому не перетинаються, тобто існує можливість підібрати такі значення параметрів, щоб виключити, або мінімізувати обидві зони.

Четвертий розділ присвячено вивченню взаємодії скінченої пластини з вихорами, що набігають з потоком рідини при ReL=103¸104. Вивчається так звана паралельна взаємодія, тобто така, коли вісь вихору направлено паралельно до розмаху тіла (пластини). Пластина знаходиться всередині розрахункової області.

Розглянуто декілька способів введення початкового вихору в розрахункову область. Як результат аналізу поведінки різних типів початкових вихорів для подальшого вивчення вибрано формулу так званого вихору Ламба:

. (4)

В початковий момент один або пара вихорів, описуваних формулою (4), накладаються на деякій відстані вгору за потоком від пластини на дані стаціонарного обтікання пластини, одержані при даному числі Рейнольдса за описаним чисельним алгоритмом методом усталення. Подальший розвиток потоку і зміни, які відбуваються з вихорами та пограничним шаром на пластині залежать від початкового діаметра вихору а0, циркуляції Г, положення відносно пластини (початкового зсуву центру по вертикалі).

Процес взаємодії у часі можна розділити на три етапи (Рис.1). На першому етапі початковий вихор, який далі називається конвективним, знаходиться відносно далеко від пластини, його вплив проявляється у виникненні деякої асиметрії течії в районі передньої кромки пластини за рахунок створеного периферією вихору скосу потоку.

На другому етапі ядро вихору проходить поблизу носика пластини. Його початково кругла форма деформується, центр вихору зміщується по вертикалі. Відбувається прискорене зменшення максимальної завихреності в центрі вихору. На пластині може виникати перетікання частини рідини з однієї поверхні до іншої навколо передньої кромки. Це спричинює відрив на цій другій поверхні, з якого формується вихор з протилежним знаком завихреності відносно конвективного вихору. Конвективний вихор розрізається пластиною на дві частини.

На третьому етапі вихор або дві його частини мігрують вздовж різних боків пластини. Їх вплив на місцевий пограничний шар залежить від напрямку і величини поздовжньої компоненти швидкості в тому місці, де вони торкаються пограничного шару (Рис.2). Якщо напрямок співпадає з напрямком течії в пограничному шарі, градієнт швидкості по нормалі до поверхні збільшується, відповідно зростає місцеве тертя на пластині, і навпаки. Від цього ж залежить і швидкість, з якою частини вихору пересуваються вздовж пограничного шару. Тому вони неодночасно сходять з задньої кромки пластини. Вторинний вихор, який зійшов з передньої кромки і також мігрує в пограничному шарі, але з меншою швидкістю, зменшує градієнт швидкості і тертя на поверхні.

Вплив вихору на пограничний шар відображено у зміні з часом інтегрального коефіцієнта тертя пластини (Рис.3). Найбільші зміни відбуваються в тих випадках, коли центр вихору знаходиться на рівні передньої кромки під час другого етапу взаємодії. Зсув початкового положення центра по вертикалі до одного початкового діаметра вгору або вниз викликає не однакові зміни у процесі взаємодії внаслідок різних знаків завихреності у пограничному шарі на різних боках пластини.

Максимальні відхилення виникають на другому етапі, коли наближення будь-якого вихору викликає зменшення тертя за рахунок скошеного потоку навколо передньої кромки.

Зменшення циркуляції при однаковому початковому діаметрі зменшує інтенсивність взаємодії. При збільшенні циркуляції до Г=0.5 відривний вихор стає значно інтенсивнішим, після сходу з передньої кромки його дія на пограничний шар переважає вплив конвективного вихору, який зазнає посиленої дифузії.

При зменшеному числі Рейнольдса ReL=103 вплив проходження вихору значно ослаблюється, помітні зміни в пограничному шарі спостерігаються тільки в момент безпосереднього контакту ядра вихору з передньою кромкою. Відривний вихор не утворюється, а дві частини конвективного вихору виштовхуються на периферію пограничного шару і майже не викликають змін на поверхні пластини.