В современных ГТД в основном применяются кольцевые камеры сгорания различных типов: прямоточные и противоточные, с центробежными и вращающимися дисковыми форсунками а также с испарительными форсунками.
Потери полного давления в камерах сгорания вызываются гидравлическим и тепловым сопротивлением. Гидравлическое сопротивление определяется в основном потерями в диффузоре, фронтовом устройстве при смешении струй при повороте потока (
). Тепловое сопротивление возникает вследствие подвода тепла к движущемуся газу. На рис. 1.5 показана зависимость коэффициента теплового сопротивления от степени подогрева газа и приведенной скорости - на входе в камеру сгорания (на выходе из диффузора). Линия - соответствует «тепловому запиранию» камеры, т.е. определяет предельные значения степени подогрева воздуха в камере сгорания постоянной площади, превышение которых при заданных значениях физически невозможно. Обычно и . Принимаем .Суммарные потери полного давления в камерах сгорания подсчитываются по формуле
Более точные значения
определяются в газодинамических расчетах камеры сгорания.Рисунок 1.5 – Зависимость теплового сопротивления камеры сгорания от степени подогрева и приведенной скорости потока.
Потери тепла в камерах сгорания, главным образом, связаны с неполным сгоранием топлива и оценивается коэффициентом полноты сгорания
.Этот коэффициент на расчетном режиме достигает значений . ПринимаемПри наличии переходного патрубка между турбинами компрессора коэффициент восстановления полного давления выбирается в зависимости от формы канала. Принимаем
Выходное устройство ГТД, как правило, выполняется диффузорным. Коэффициент восстановления полного давления принимаем
1.2 Термогазодинамический расчет двигателя
Целью теплового расчета двигателя является определение основных удельных параметров (
- удельной мощности, - удельного расхода топлива). При этом вычисляют значения параметров рабочего тела в характерных сечениях двигателя. Эти данные используют при согласовании параметров компрессора и турбины и при общей компоновке проточной части двигателя.Таблица 1.1 - Исходные данные для теплового расчета
Величина | Размерность | Значение | Величина | Размерность | Значение |
Н | км | 0 | sпт | - | 0,99 |
Мн | - | 0 | sрн | - | 0,985 |
Gв | кг/с | 88 | hт | - | 0,985 |
Т*Г | К | 1525 | hред | - | 1 |
p*К | - | 20,8 | hВ | - | 1 |
h*К | - | 0,842 | СС | м/с | 90 |
h*ТК | - | 0,89 | НU | кДж/кг | 51000 |
sвх | - | 0,96 | CP | Дж/(кгК) | 1005 |
sкс | - | 0,926 | CpГ | Дж/(кгК) | 1160 |
hГ | - | 0,98 |
1.2.1 Вход в двигатель (сечение Н-Н). По таблице параметров стандартной атмосферы для Н=0 находим ТН=288,15К и РН=101325 Па. Так как МН=0, то Т(МН)=1, Р(МН)=1 и следовательно
=288,15К и =101325 Па.1.2.2 Вход в компрессор (сечение В-В). Температура и давление воздуха на входе в компрессор равны:
1.2.3 Выход из компрессора (сечение К-К)
1.2.4 Выход из камеры сгорания (сечение Г-Г). При заданной температуре газа
=1525 К, степень подогрева воздуха в камере сгорания составляет:Относительный расход топлива вычислим по формуле Ильичёва:
1.2.5 Выход из турбины компрессора (сечение ТК-ТК). Принимаем n=1, тогда
. Работа турбины компрессора, степень повышения давления в ней, параметры газа на входе равны:
1.2.6 Выход из турбины (сечение Т-Т)
Принимаем
1.2.7 Параметры двигателя. Удельная мощность и удельный расход топлива турбовального двигателя находим из соотношений:
Таблица 1.2 – Результаты теплового расчета
Величина | Размерность | Значение | Величина | Размерность | Значение |
Lк | Дж/кг | 4,960х105 | - | 3,98 | |
Lтк | Дж/кг | 5,035х105 | кВтс/кг | 365,63 | |
Lсв | Дж/кг | 3,77х105 | кг/(Квтч) | 0,1870 | |
Lтв | Дж/кг | 3,656х105 | - | 0,019 | |
- | 4,7 |
Таблица 1.3 - Результаты теплового расчета
Сечение | Параметры газа | Примечания | |
Т*,К | Р*,Пах105 | ||
Н-Н | 288,15 | 1,01325 | |
В-В | 288,15 | 0,972 | |
К-К | 774,32 | 21,39 | |
Г-Г | 1525 | 19,81 | |
ТК-ТК | 1085,86 | 4,174 | |
Т-Т | 771,29 | 1,047 | |
С-С | 769,79 | 1,023 | Тс=767,79 |
1.3 Термогазодинамический расчет на ЭВМ.
Таблица1.4 - Исходные данные
2. ФОРМИРОВАНИЕ ОБЛИКА ГТД
2.1. Подготовка исходных данных
Формирование облика (проточной части) ГТД и ГТУ является одним из наиболее важных начальных этапов проектирования ГТД и ГТУ, непосредственно следующим за выполнением теплового расчета и предшествующим газодинамическим расчетам элементов проточной части (каскадов компрессоров и турбин). При выполнении расчетов по формированию облика ГТД (ГТУ) определяются: форма проточной части, частоты вращения роторов и число ступеней каскадов лопаточных машин. Исходными данными для этих расчетов являются значения заторможенных параметров рабочего тела (воздуха и продуктов сгорания) в характерных (расчетных) сечениях проточной части, основные геометрические (диаметральные) соотношения каскадов лопаточных машин и принимаемые значения коэффициентов аэродинамической загрузки компрессорных и турбинных ступеней. В учебном проектировании обычно (для облегчения задачи) задается прототип проектируемого ГТД или ГТУ. В этом случае начальный выбор геометрических соотношений элементов проточной части и числа ступеней каскадов лопаточных машин заметно упрощается.
Ne – мощность в кВт
Lкнд/Lк – распределение общей работы повышения полного давления
КПДкнд* - коэффициент полезного действия КНД
Sнв – коэффициента восстановления полного давления в переходном канале между КНД и КВД