Электрохимическое обезжиривание, несмотря на высокую эффективность, применяют, в основном для очистки поверхности металла от небольшого слоя жира. Если поверхность деталей имеет значительные жировые загрязнения, ее предварительно обезжиривают химическим методом.
Процесс электрохимического обезжиривания можно вести и на катоде, и на аноде. При одинаковом количестве тока, проходящем через электролит, на катоде выделяется в 2 раза больше газа, чем на аноде. Следовательно, катодное обезжиривание более эффективно. Вследствие наводороживания деталей при катодном обезжиривании часто обезжиривание проводят сначала на катоде, а затем на аноде, либо только на аноде.
При реверсивном способе ведения процесса очистки время анодной обработки составляет обычно 1/5—1/15 времени катодной обработки. Рабочее напряжение на ванне должно быть более 2,5—3 В (напряжение разложения воды в ваннах обезжиривания); обычно применяют выпрямители с напряжением 6—12 В. Расстояние между электродами в целях экономии электроэнергии делают минимальным, и обычно оно составляет 0,05—0,15 м. В качестве второго электрода можно применять: при анодном обезжиривании — сталь (катод), при катодном и реверсивном обезжиривании — коррозионно-стойкую сталь, никелированную углеродистую сталь или предпочтительнее никелевые пластины. Имеются также рекомендации по применению переменного тока для обезжиривания, что исключает наводороживание.
Электрохимический способ травления металлов значительно ускоряет процесс очистки как за счет обильно выделяющегося на деталях газа, так и в результате химического и электрохимического растворения окислов и металла. При подготовке поверхности перед нанесением гальванических покрытий наиболее широко применяют способы анодного травления.
Анодное травление желательно вести при высоких плотностях тока, так как при низких происходит неравномерное травление и на поверхности остается травильный шлам.
Катодное травление вследствие наводороживания применяют реже. Его используют в том случае, когда необходимо значительно сократить непроизводительные потери металла и расход кислоты [3, С.79-81].
Цель промывки — не только тщательно удалить с поверхности изделий растворы и продукты от предыдущей операции, но и при экономном расходе воды обеспечить их минимальное попадание в сточные воды.
Наряду с экономным расходом воды важным показателем эффективности промывки является качество воды. Плохое ее качество и плохая система промывки могут оказывать существенное влияние на качество получаемых покрытий. Повышенное содержание кальция и магния может вызвать образование пятен на поверхности покрытия.
По физико-химическим показателям чистую воду нужно оценивать в зависимости от влияния вредных примесей, содержащихся в ней, на режим электролиза, а также на вид и структуру покрытия.
Для промывки защитных покрытий, к которым не предъявляются повышенные требования, может применяться техническая вода. Остальные физико-химические показатели технической воды не должны быть выше ПДК вредных веществ в водоемах санитарно-бытового использования. Вода из городского водопровода (общая жесткость 6 мг-экв/л) должна применяться для промывки защитных покрытий, к которым предъявляются повышенные требования, а также для большинства защитно-декоративных покрытий.
При нанесении защитно-декоративных покрытий, к которым предъявляются повышенные требования (для точных приборов, медицинского инструмента, ювелирных изделий и пр.), промывку деталей следует проводить в конденсате, дистиллированной или деминерализованной воде с предельной жесткостью 1,5 мг-экв/л и общим содержанием соли до 80 мг/л. Вода того же качества должна использоваться для приготовления растворов электролитов, заполнения ванн улавливания и для промывки деталей перед нанесением и сушкой покрытий.
Существует две схемы промывки деталей: одноступенчатая — промывка в одной ванне с проточной водой (рис. 1), многоступенчатая — промывка в нескольких последовательно установленных ваннах (ступенях) с проточной водой (рис. 2).
Рис. 1. Одноступенчатая схема промывки: 1 — технологическая ванна; 2 — ванна промывки
Многоступенчатая схема промывки подразделяется на прямоточную и противоточную (каскадную: двух- и трехступенчатую). Каждая из схем промывки может дополняться ванной улавливания. При конечных промывных операциях рассматриваемые схемы могут включать струйные промывки.
Рис. 2 Многоступенчатая схема промывки: а — прямоточная; б — противоточная (каскадная); 1 — технологическая ванна; 2, 3 — ванны промывки
В гальваническом производстве различают три вида промывки: холодную (температура не нормируется); теплую (при 40—50 СС) и горячую (при 70— 90 °С). Существует несколько методов промывки: погружной — осуществляется в ваннах с непроточной водой (т. е. в ваннах улавливания) и в ваннах с проточной водой; струйный — осуществляется кратковременная промывка деталей (например, после пассивирования) простой конфигурации (линейки, ли-етовые изделия, плоские детали), а также смыв с деталей вязких растворов; этот метод экономичнее, чем погружением; комбинированный (погружной и струйный) — применяется для промывки деталей сложной конфигурации и смыва с деталей вязких растворов. Сначала детали поступают в ванну, заполненную водой, а затем после извлечения из ванны промываются направленными струями воды из душирующих сеток или из отверстий в горизонтальных трубках, расположенных в верхней части ванны промывки.
Наиболее эффективно процесс промывки происходит при перемешивании воды в промывных ваннах. Перемешивать воду можно вручную; подачей большого количества воды; механизмами и насосами, перемешивающими воду; механическим движением подвески с деталями в ванне промывки; ультразвуковой вибрацией; сжатым воздухом. Наиболее экономичным и простым способом является перемешивание воды сжатым воздухом, очищенным от масла. Воздух подается в нижнюю часть ванны по трубчатой распределительной системе. Расход воздуха принимается равным 0,2 л/мин на 1 л объема воды в ванне промывки.
Расход воды (л/ч) для любой схемы промывки
(2.1)где q — удельный вынос электролита (раствора) из ванны поверхностью деталей, л/м2;
N — число ступеней (ванн) промывки;
К0 — критерий окончательной промывки деталей;
F — промываемая поверхность деталей, м2/ч [1, С.79].
В последнее время появились более рациональные способы промывки. Так, фирма Шерринг АГ предложила метод ВАКУ-ДЖЕТ, заключающийся в отсасывании из барабанов с помощью вакуума до 60 % неразбавленного электролита и возвращении его в рабочую ванну; при этом применяют барабаны и промывные ванны специальной конструкции. Последующая промывка производится сначала струйным методом в этой же ванне, а также при необходимости дополнительно в двухступенчатой каскадной ванне (рис. 11). Метод позволяет значительно сократить потери растворов, промывной воды и расходы на очистку стоков. Фирмой предложен еще метод струйно-периодической промывки, позволяющей также снизить расход промывной воды.
3. Оборудование для гальванических операций
Стационарные ванны, или ванны ручного обслуживания, изготовляют из листовой стали; в качестве защиты стальных стенок от агрессивного воздействия электролитов применяют футеровку материалами, указанными в табл. 9, Прилож.3.
Размер ванны устанавливают, исходя из габаритов покрываемых деталей, требуемой производительности и возможности обслуживания рабочим. Устройство типовой ванны для нанесения гальванических покрытий представлено на рис. 3. С целью интенсификации процессов и повышения качества покрытий ванны оборудуются насосами и фильтрами для непрерывной фильтрации электролитов, нагревателями, барботерами для перемешивания электролита сжатым воздухом-, механизмом для покачивания катодных штанг и бортовыми вентиляционными отсосами для удаления вредных выделений.
Некоторые типы ванн снабжаются крышками и обшиваются панелями (кожухами), которые прикрывают систему труб, подводящих к ваннам пар, воздух, воду.
Рис. 3. Гальваническая ванна с нагревателем-змеевиком: 1 — корпус ванны; 2 — футеровка; 3 — змеевик для горячей воды; 4 — барботер
Покрытие мелких деталей целесообразно производить во вращающихся ваннах колокольного или барабанного типа. Колокольные ванны наливного типа удобны при покрытии небольших партий мелких деталей. Детали помещаются в колоколе и при его вращении перекатываются, касаясь контактов, закрепленных в днище колокола. Анод вводится в электролит через открытую часть колокола. Более производительными являются колокольные ванны погружного типа (Рис. 4). В этих ваннах площадь поверхности анодов настолько велика, что обеспечивает стабильность состава электролита, активное состояние анодной поверхности и, следовательно, возможность пропускания значительного тока, что, в свою очередь, позволяет вести процесс покрытия при достаточно большой катодной плотности тока.
Рис. 4 Колокольная ванна погружного типа
Для гальванического покрытия малых партий мелких деталей удобно применять переносные барабаны, которые завешиваются на катодную штангу стационарной ванны вместе с подвесками других деталей. Вращение барабана осуществляется с помощью двигателя постоянного тока, питаемого от источника тока гальванической ванны.
Полуавтоматические линии представляют собой комплект ванн, состоящий из ванн для подготовительных операций, ванн промывок и гальванических ванн, расположенных в соответствии с последовательностью технологических операций. Перемещение подвесок с деталями или барабанов производится с помощью тельфера или других механизмов, управляемых вручную. Регулирование всех параметров гальванического процесса, включая и время выдержки, осуществляется непосредственно рабочим.