Условие гармонического баланса:
Периодические решения:
Первое решение не устойчиво, поэтому в системе возникают установившиеся автоколебания:
.Пример.
Для заданной системы (рис.11) определить наличие автоколебаний и определить их устойчивость.
Решение приведено на рис 13. В этой системе могут существовать колебания четырех различных амплитуд и частот.
Если первый цикл устойчивый, система называется системой с мягким возбуждением. Если первый цикл не устойчивый, система называется системой с жестким возбуждением. Всегда имеет место чередование циклов.
1. Грумондз В.Т. Динамика нелинейных систем: Некоторые задачи устойчивости и колебаний - 2-е изд. Вуз. книга, 2009. - 182c.
2. Мирошник И.В. Теория автоматического управления: Нелинейные и оптимальные системы. Издательство: ПИТЕР, 2006. - 272c.
3. Сборник задач по теории автоматического регулирования и управления / Под редакцией В.А. Бесекерского. - M.: Наука, 1978.