ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО
ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ ЯРОСЛАВА МУДРОГО
Кафедра технологии машиностроения
Реферат
по дисциплине «Автоматизация производственных процессов
в машиностроении »
Гибкие производственные системы (ГПС) металлообработки деталей.
Выполнил:
Студент 3 курса
Группы 2233
Новиков О. М.
Проверил:
Преподаватель
Никуленков О.В.
Великий Новгород
2008
Содержание
Введение 3
1.1 Основные понятия и определения 5
1.2 Классификация производственных систем 6
2.1. Основные характеристики гибкого автоматизированного производства 9
2.1.1. Производительность ГПС 9
2.1.2. Понятие о гибкости автоматизированного производства 9
2.1.2.1. Характерные элементы гибкости 10
2.1.2.2. Виды гибкости 11
2.1.3. Эффективность работы ГПС 11
3. Станочная система ГПС 13
3.1. Классификация и основные определения 13
3.2. Оборудование, применяемое в ГПС 13
3.2.1. Оборудование для изготовления заготовок 13
3.2.2. Станки токарной группы 16
3.2.3. Станки для обработки корпусных и плоскостных деталей 17
Список использованной литературы 19
Введение
В нашей стране широкое распространение получили автоматические поточные линии, объединяющие комплексы автоматически работающих агрегатных станков и станков-автоматов.
Недостаток – узкая ориентация на изготовление определенного вида изделий. В связи с этим подобные средства можно использовать только там, где производство носит массовый, устойчивый характер.
В промышленно развитых странах крупносерийное и массовое производство составляет лишь 20%, а единичное, мелкосерийное и серийное производство – 80 %.
В целях разрешения противоречий, обусловленных, с одной стороны, мелкосерийностью объектов производства, а с другой, крупными масштабами самого производства, были разработаны методы групповой технологии.
Следующим шагом на пути автоматизации производства является разработка программируемых и за счет этого перенастраиваемых средств, то есть гибкого оборудования. К ним относятся станки с ЧПУ, в том числе обрабатывающие центры, промышленные роботы и другое оборудование. Еще большей гибкостью обладают системы, управляемые от ЭВМ. Подобные системы называют по разному:
В Японии – гибкой автоматизацией, гибким производственным комплексом.
В США – гибкой производственной системой (FMS). (ГПС).
В нашей стране такого рода комплексы называют гибким автоматическим производством (ГАП).
ГАП функционирует на основе программного управления и групповой ориентации производства. На первом этапе ГАП может быть автоматизированным, то есть включать операции, выполняемые с участием человека.
ГАП включает исполнительную систему, состоящую из технологической, транспортной, складской систем и систему управления.
Анализ ГПС позволяет сделать некоторые выводы:
· управление транспортными системами и работой станков осуществляется одной или несколькими отдельными ЭВМ;
· число станков в ГПС колеблется от 2 до 50. Однако 80% ГПС составлено из 4-5 станков и 15% из 8 – 10;
· реже встречаются системы из 30-50 станков (2-3%);
· наибольший экономический эффект от использования ГПС достигается при обработке корпусных деталей, нежели от их использования при обработке других деталей, например деталей типа тел вращения. Например в Германии их 60%, в Японии – более 70, в США – около 90%;
· различна и степень гибкости ГПС. Например в США преобладают системы для обработки изделий в пределах 4-10 наименований, в Германии – от 50 до 200;
· нормативный срок окупаемости ГПС в различных странах 2 - 4,5 года.
Проблемы, возникшие при применении гибких систем
· ГПС не достигла поставленных целей по рентабельности; она оказалась слишком дорогостоящей по сравнению с преимуществами, достигнутыми с ней. Обнаружено, что причиной высокой стоимости оборудования были несоразмерные расходы на приспособления и транспортную систему;
· разработка и введение в эксплуатацию комплексной ГПС оказалось трудным, а также дорогостоящим;
· из-за недостатка опыта было трудно выбирать подходящие типы систем и оборудование для нее;
· имеется мало поставщиков систем, которые могут поставлять сложные системы.
· в некоторых случаях эксплуатационники получили опыт о фактически слабой гибкости;
· конструктивные элементы ГАПС, например, станки, системы управления и периферийные устройства часто оказывались неподходящими к системе и вызывали лишние проблемы по стыковке.
· Эксплуатационники часто не имеют достаточной готовности к эксплуатации сложной системы;
· Длительный срок выполнения проекта от конструирования до запуска системы.
Перспективы применения гибких систем
· одновременное повышение эффективности и гибкости;
· повышение степени автоматизации не уменьшая гибкости;
· усовершенствование таких измерительно-контрольных методов, которые контролируют в процессе обработки состояние инструмента и обрабатываемых деталей, необходимое для соответствующей автоматической подналадки;
· уменьшение количества приспособлений и палет за счет автоматизации крепления деталей;
· введение в ГПС таких операций, как промывка, покрытие, термообработка, сборка и т.д.;
· развитие профилактического техобслуживания.
Значение ГПС
· более высокий коэффициент использования станков (в 2-4 раза больше по сравнению с применением отдельных станков);
· более короткое время прохода производства;
· уменьшается доля незаконченного производства, т.е. уменьшается количество запасов деталей на складах, которое означает уменьшение продукции, привязанного к производству;
· более ясный поток материала, меньше перетранспортировок и меньше точек управления производством;
· уменьшаются расходы на заработную плату;
· более ровное качество продукции;
· более удобная и благоприятная обстановка и условия работы для работающих.
1.1 Основные понятия и определения
Производственным процессом в машиностроении называют совокупность действий, необходимых для выпуска готовых изделий. В основу производственного процесса положен технологический процесс изготовления изделий, во время которого происходит изменение качественного состояния объекта производства. Для обеспечения бесперебойного выполнения технологического процесса изготовления изделия необходимы еще и вспомогательные процессы
Основные этапы производственного процесса:
· получение и складирование заготовок;
· доставка заготовок к рабочим позициям;
· различные виды механической обработки;
· перемещение полуфабрикатов между рабочими позициями;
· контроль качества;
· хранение на складах;
· сборка изделий;
· испытание, регулировка;
· окраска, отделка, упаковка и отправка.
Различные этапы производственного процесса на машиностроительном заводе могут выполняться в отделочных цехах или в одном цехе.
В соответствии с ГОСТ 26229 гибкая производственная система (ГПС) (гибкое автоматизированное производство - ГАП) - совокупность в разных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик.
Периоды развития ГАП:
1 период - 60-70 годы - разработка и проверка базисных принципов создания;
2 период - 80 годы - разработка и создание элементной техники и технологии;
3 период - 90 годы - разработка и создание системы комплексов ГП.
Наибольшее распространение получили ГАП в механообработке. Здесь сформировались типичные структуры - модули, объединяемые в линии или участки с помощью транспортно-складских систем. Состав модуля включает:
· обрабатывающий центр;
· накопитель палет или кассет и средства ЧПУ.
Сравнительные данные по использованию ГАП в различных технологиях:
- металлообработка резанием - 50 %;
- металлообработка формовкой - 21 %;
- сварка - 12 %;
- сборка - 5 %;
- остальные технологии - 12 %.
Сложнее всего происходит внедрение ГАП в сборочные производство, это связано:
- со сложностью и разнообразием объектов сборки и необходимой для этой сборки оснастки;
- коротким циклом операций сборки;
- нежесткостью или упругостью деталей;
- необходимостью в настройке, подгонке и учете малых допусков в сочленении деталей.
В сборочных ГАП центральным компонентом являются роботы с развитой сенсорикой и высоким уровнем машинного интеллекта, что влияет на увеличение уровня затрат при создании ГАП сборки. Поскольку роботы с интеллектуальными средствами управления еще не получили широкого распространения, то приходится резко повышать затраты на периферийное оборудование и оснастку, создавая условия для применения более простых роботов. При этом стоимость оснастки и периферии составляет до 70 % от общей стоимости сборочного модуля. Далее будут более подробно рассмотрены экономические и социальные аспекты использования роботов. Однако, ГАП не является эффективным для любых типов производств.
В настоящее время роботы в основном применяются при операциях транспортирования, сборки, обслуживания обрабатывающего оборудования, сварки и контроля. С точки зрения вычислительной нагрузки на управляющую ЭВМ производственные операции можно подразделить на два вида: