| Гидромотор, как и роторный насос, харак-теризуется рабочим объе-мом V0 ,который зависит от его вида. Расход гидромотора определяется по формуле |
Рисунок 7.3 – Условное обозначение гидромотора |
где n – частота вращения вала гидромотора;
Перепад давления на гидромоторе определяется разностью между давлением на входе и на выходе, т. е.
Dр = р1-р2. (7.8)
Полезная мощность гидромотора равна
Nn = М×w, (7.9)
где М – крутящий момент на валу гидромотора; w - угловая скорость вала, w = pn/30.
Мощность, потребляемая гидромотором:
N =DpQ. (7.10)
Отношение Nп/N определяет общий к. п. д. гидромотора
7.2 Гидроаппаратура
Гидроаппаратом называется устройство, предназначенное для изменения параметров потока рабочей жидкости (давления, расхода, направления движения) или для поддержания их заданного значения. Основным элементом всех гидроаппаратов является запорно-регулирующий орган – подвижный элемент, при перемещении которого частично или полностью перекрывается проходное сечение гидроаппарата. В зависимости от конструкции запорно-регулирующие элементы бывают золотниковые, клапанные, крановые.
Если гидроаппарат изменяет параметры потока рабочей жидкости, то он является регулирующим.
Гидроаппараты можно разделить на три основных типа:
а) гидрораспределители; б) гидроклапаны; в) гидродроссели.
Рассмотрим кратко каждый тип гидроаппарата.
1 Гидрораспределители. Гидрораспределитель – это гидроаппарат, предназначенный для изменения направления потока рабочей жидкости в двух или более гидролиниях. В зависимости от числа внешних гидролиний, подводимых к распределителю, гидрораспределители бывают двухлинейные, трехлинейные и т. д.; в зависимости от числа позиций запорно-регулирующего органа - двухпозиционные, трехпозиционные
| и т. д. Условное обозначение 4-линейного 3- позиционного распреде-лителя с электрическим управлением показано на рис.7.4. |
Рисунок 7.4 – Условное обозначение распределителя |
Наиболее распространенным является золотниковый распределитель.
Потери давления Dрр в гидрораспределителе определяют по формуле
где Qном и рном – номинальная подача и потери напора на номинальной подаче (паспортные данные);
Qф - фактическая подача жидкости в гидроаппарате.
2 Гидроклапаны. Гидроклапаном называется гидроаппарат, в котором степень открытия проходного сечения изменяется под воздействием напора проходящей через него жидкости. Гидроклапаны бывают регулирующие и направляющие. К регулирующим относятся клапаны давления, предназначенные для регулирования давления в потоке рабочей жидкости. Из них наиболее широко применяются напорные и редукционные клапаны.
Напорные гидроклапаны делятся на предохранительные, которые предохраняют систему от давления, превышающего допустимое, и переливные, предназначенные для поддержания заданного уровня давления путём непрерывного слива рабочей жидкости во время работы.
Основные элементы шарикового напорного клапана показаны на рис. 7.5 .
| Принцип действия всех напорных клапанов одинаков и основан на уравновешивании силы давления рабочей жидкости, действующей на клапан, усилием пружины (рис. 7.6). |
Рисунок 7.5 – Схема предохра-нительного клапана |
| Сила давления пружины Fпр уравновешивается силой давления жидкости Fдавл, действующей на запорный элемент. При условии Fпр = Fдавл – клапан закрыт. Сила давления Fдавл определяется из условия: |
Рисунок 7.6 – Принцип действия напорного клапана |
Fдавл = р ×
где р- давление жидкости в системе; dy – диаметр седла клапана (условного прохода жидкости).
Когда давление жидкости в системе превысит заданное, то Fпр< Fдавл, запорно-регулирующий орган клапана смещается и открывает проход рабочей жидкости на слив.
Редукционные клапаны предназначены для поддерживания в отводимом потоке стабильного давления р2, более низкого, чем давление р1 в подводимом потоке. Их применяют при питании от одного насоса нескольких потребителей, требующих разных давлений.
Направляющие (обратные) клапаны пропускают жидкость только в одном заданном направлении.
2 Гидравлические дроссели. Гидродроссель – это регулирующий гидроаппарат, представляющий собой специальное местное сопротивление, предназначенное для изменения давления в потоке рабочей жидкости. Основное назначение его – установить связь между пропускаемым расходом и перепадом давления до и после дросселя. Дроссели разделяют на регулируемые и нерегулируемые. Регулируемые дроссели (условное обозначение показано на рис 7.7) широко применяют в гидроприводе для регулирования скорости движения выходного звена гидродвигателя.
| |
Рисунок 7.7 – Условное обозна-чение регулируемого дросселя | Рисунок 7.8 – Схема игольча-того дросселя |
В системах гидроавтоматики распространены игольчатые, щелевые и винтовые дроссели. Схема игольчатого дросселя показана на рис. 7.8. Изменение площади проходного сечения дросселя достигается за счет осевого перемещения иглы.
Расход жидкости через дроссель любой конструкции определяется по формуле
Qдр =
где
8 Принципиальная схема гидропривода. Пневматический привод
8.1 Принципиальная схема гидропривода
Принципиальная схема гидропривода возвратно-поступательного движения показана на рис. 8.1.
| Насос забирает жидкость из бака 9 и через дроссель 3 и распределитель 4 подает ее в рабочую полость гидроцилиндра 5. Под действием давления рр поршень перемещается вправо и преодолевает нагрузку F, сдвигая стол рабочей машины 6.Из гидроцилинд-ра жидкость сливается через другой канал распределителя 4, подпорный клапан 7 и фильтр 8 в бак 9. |
Рисунок 8.1 – Принципиальная схема гидропривода:1 – насос; 2 – клапан напорный; 3 – дроссель; 4 – распределитель; 5 – гидроцилиндр; 6 – стол рабочей машины;7 – клапан подпорный; 8 – фильтр; 9 - бак |
Изменение направления движения поршня гидроцилиндра 5 производится изменением позиции распределителя 4. Дроссель 3- регулируемый и позволяет изменять площадь проходного сечения, тем самым изменяя расход жидкости, поступающей в гидроцилиндр Qц. При этом изменяется скорость Vn передвижения поршня гидроцилиндра и соответственно стола рабочей машины : (
8.2 Общие сведения о пневмоприводе
Пневмоприводом называется совокупность устройств, предназначенных для приведения в действие машин и механизмов посредством сжатого газа. Обычно в пневмоприводах рабочей средой является сжатый воздух.
Пневмопривод используется в станках, тормозных системах, полиграфических машинах, пневмороботах, пневматическом инструменте и др. В сравнении с гидроприводом пневмопривод имеет как преимущества, так и недостатки.
Преимущества пневмопривода следующие: а) небольшие потери давления в пневмолиниях; б) возможность использования в пожароопасных помещениях; в) экологичность.
Недостатками пневмопривода являются большой шум, необходимость устройства смазывающих систем и меньшая мощность в сравнении с гидроприводом.
Функциональная схема пневмопривода (рис. 8.2) аналогична схеме гидропривода, только вместо энергии жидкости используется пневмоэнергия, а вместо гидродвигателя и насоса используются пневмодвигатель и компрессор.
Рисунок 8.2 – Схема пневмопривода:
1 – компрессор; 2- фильтр-влагоотделитель; 3 – редукционный клапан; 4 – манометр; 5 – маслораспылитель; 6 – распределитель; 7 – пневмоцилиндр;8 – выход в атмосферу
Рассмотрим принцип работы пневмопривода.
Сжатый воздух от компрессора 1 подводится на вход пневмораспределителя 6. Поток воздуха перед этим проходит через фильтр – влагоочиститель 2, очищается от механических частиц ( пыли, продуктов износа, корозии) и водяного пара. Далее при помощи редукционного клапана 3 регулируется и поддерживается на установленном уровне давление воздуха, которое контролируется манометром 4.
Маслораспылитель 5 насыщает воздух мелкими капельками масла и обеспечивает смазку двигающихся элементов пневмопривода. Двухпозиционный пневмораспределитель 6 в каждой из позиций устанавливает направление движения поршня пневмоцилиндра 7. Отработанный воздух выходит в атмосферу 8.