Смекни!
smekni.com

Двухступенчатый редуктор (стр. 1 из 6)

Содержание.

Задание на проект

Введение

1. Выбор электродвигателя и кинематический расчет

2. Расчет зубчатых колес

2.1 Выбор материала

2.2 Расчет быстроходной ступени

2.3 Расчет тихоходной ступени

3. Предварительный расчет валов редуктора

4. Конструктивные размеры шестерни и колеса

5. Конструктивные размеры корпуса и крышки

6. Проверка долговечности подшипников

7. Проверка прочности шпоночных соединений

8. Уточненный расчет валов

9. Выбор сорта масла

10. Посадки деталей редуктора

11. Список литературы

Спецификация к редуктору

Задание: Спроектировать привод ленточного транспортера.

Вариант № 38.

Исходные данные:

Срок службы: 7 лет

Мощность на выходном валу Р3= 8 кВт

Угловая скорость на выходном валу w3= 3.2π рад/с = 10 рад/с

ВВЕДЕНИЕ.

Цель курсового проектирования – систематизировать, закрепить, расширить теоретические знания, а также развить расчетно-графические навыки студентов. Основные требования, предъявляемые к создаваемой машине: высокая производительность, надежность, технологичность, минимальные габариты и масса, удобство в эксплуатации и экономичность. В проектируемом редукторе используются зубчатые передачи.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи мощности от двигателя к рабочей машине.

Назначение редуктора – понижение угловой скорости и повышение вращающего момента ведомого вала по сравнению с валом ведущим.

Нам в нашей работе необходимо спроектировать редуктор для ленточного транспортера, а также подобрать муфты, двигатель. Редуктор состоит из литого чугунного корпуса, в котором помещены элементы передачи – 2 шестерни, 2 колеса, подшипники, валы и пр. Входной вал посредством муфты соединяется с двигателем, выходной также посредством муфты с транспортером.

1. Выбор электродвигателя и кинематический расчет.

Кинематический анализ схемы привода.

Привод состоит из электродвигателя, двухступенчатого редуктора. При передаче мощности имеют место ее потери на преодоление сил вредного сопротивления. Такие сопротивления имеют место и в нашем приводе: в зубчатой передаче, в опорах валов, в муфтах и в ремнях с роликами. Ввиду этого мощность на приводном валу будет меньше мощности, развиваемой двигателем, на величину потерь.

1.1 Коэффициент полезного действия привода.

По таблице 1.1 [1] коэффициент полезного действия пары цилиндрических колес ηз.к. = 0,98; коэффициент, учитывающий потери пары подшипников качения, ηп = 0,99; коэффициент, учитывающий потери в муфте ηм = 0,98; коэффициент, учитывающий потери в ремне с роликами ηр = 0,9

0,98*0,99*0,98 = 0,95

0,95*0,98*0,99 = 0,92

0,92*0,99 = 0,91

Общий КПД привода:

= 0,982 * 0,995 * 0,982*0,9 = 0,8

1.2 Выбор электродвигателя.

Требуемая мощность электродвигателя:

Ртр3/

=8/0,8=10 кВт,

Частота вращения барабана:

При выборе электродвигателя учитываем возможность пуска транспортера с полной загрузкой.

Пусковая требуемая мощность:

Рптр*1,3м=10*1,3=13 кВт

Эквивалентная мощность по графику загрузки:

кВт

По ГОСТ 19523-81 (см. табл. П1 приложения [1]) по требуемой мощности

Ртр = 10 кВт выбираем электродвигатель трехфазный асинхронный

короткозамкнутый серии 4АН закрытый, обдуваемый с синхронной частотой

n = 1500 об/мин 4АН132М4 с параметрами Рдв = 11 кВт и скольжением

S=2,8 %, отношение Рпн=2. Рпуск=2*11=22 кВт - мощность данного двигателя на пуске. Она больше чем нам требуется Рп= 13 кВт.

Номинальная частота вращения двигателя:

где: nдв – фактическая частота вращения двигателя, мин-1;

n – частота вращения, мин-1;

s – скольжение, %;

Передаточное отношение редуктора:

U=nдв/n3=1458/95,5=15,27

Передаточное отношение первой ступени примем u1=5; соответственно второй ступени u2=u/u1=15,27/5=3,05

1.3 Крутящие моменты.

Момент на входном валу:

,

где: Ртр – требуемая мощность двигателя, кВт;

– угловая скорость вращения двигателя, об/мин;

где: nдв – частота вращения двигателя, мин-1;

Момент на промежуточном валу:

Т2 = Т1 * u1 * η2

где: u1 – передаточное отношение первой ступени;

η2 – КПД второго вала;

Т2 = 65,5*103 * 5*0,92 =301,3*103 Нмм

Угловая скорость промежуточного вала:

Момент на выходном валу:

Т3 = Т2 * u2 * η3

где: u2 – передаточное отношение второй ступени;

η3 – КПД третьего вала;

Т3 = 301,3*103 * 3,05 * 0,91 = 836,3*103 Нмм

Угловая скорость выходного вала:

Все данные сводим в таблицу 1:

таблица 1

Быстроходный вал Промежуточный вал Тихоходный вал
Частота вращения, об/мин n1= 1458 n2=291,3 n3=95,5
Угловая скорость, рад/с w1= 152,7 w2 =30,5 w3= 10
Крутящий момент, 103 Нмм T1= 65,5 T2= 301,3 T3= 836,3

2. Расчет зубчатых колес.

2.1 Выбор материала.

Выбираем материал со средними механическими характеристиками: для шестерни сталь 45, термическая обработка – улучшение, твердость НВ 230; для колеса – сталь 45, термическая обработка – улучшение, но на 30 единиц ниже НВ 200.

Допускаемые контактные напряжения по формуле (3.9 [1])

, МПа

где: σН limb– предел контактной выносливости, МПа;

, МПа

для колеса:

= 2*200 + 70 = 470 МПа

для шестерни:

= 2*230 + 70 = 530 Мпа

КНL – коэффициент долговечности

,

где: NHO – базовое число циклов напряжений;

NНЕ – число циклов перемены напряжений;

Так как, число нагружения каждого зуба колеса больше базового, то принимают КHL = 1.

[SH] – коэффициент безопасности, для колес нормализованной и улучшенной стали принимают [SH] = 1,1

1,2.

Для шестерни:

Для колеса:

Тогда расчетное контактное напряжение определяем по формуле (3.10 [1])

= 0.45(481+428)=410 МПа.

2.2 Расчет быстроходной ступени двухступенчатого зубчатого редуктора.

2.2.1 Межосевое расстояние определяем по формуле (3.7 [1])

, мм

где: Ка – для косозубых колес Ка = 43;

u1 – передаточное отношение первой ступени;

Т2 – крутящий момент второго вала, Нмм;

КНβ – коэффициент, учитывающий не равномерность распределения нагрузки по ширине венца.

При проектировании зубчатых закрытых передач редукторного типа принимают значение КНβ по таблице 3.1 [1]. КНβ=1,25

H] – предельно допускаемое напряжение;

ψba – коэффициент отношения зубчатого венца к межосевому расстоянию, для косозубой передачи ψba= 0,25

0,40.

мм