Смекни!
smekni.com

Деформационные способы получения полимерных пленок (стр. 2 из 4)

В условиях крупнотоннажного производства процесс взвешивания непрерывен и осуществляется в специальных дозаторах. Для удаления летучих веществ проводят сушку. Используют различные виды сушилок: ленточные непрерывного действия, турбинные, вакуум-сушилки и др.

Однородность формуемого материала достигается равномерным распределением всех компонентов в объеме композиции, что зависит от качества смешения. На первой стадии процесса подготовленные компоненты подвергают «сухому» смешению, исключающему гелеобразование (желирование), в смесителях различного типа (лопастных, турбоскоростных, турбошнековых и др.).

Высокое качество смешения обеспечивает двухстадийный турбоскоростной смеситель, в котором сокращение цикла работы достигается разделением стадий горячего смешения и охлаждения смеси. В верхней секции установки возникающие благодаря вращению мешалки и внешнему обогреву.

Рис 2. Схема двухстадийного турбосмесителя

1- лопасть для регулирования вращательного движения смеси; 2-бак смесителя; 3- мешалка

В нижней охлаждаемой секции установки, куда горячая смесь поступает через пневмозатвор, ее охлаждают при интенсивном перемешивании, что способствует быстрой теплоотдаче материала. Схема действия такого смесителя (на стадии горячего смешения) представлена на рис. 3. Параметры процесса (температура, скорость, продолжительность перемешивания) зависят от состава композиции.

Рис 3. Смеситель

Пластикацию порошкообразной композиции однородного состава осуществляют преимущественно в смесителях роторного типа (рис. 3). Материал, попадая в зазор между стенкой закрытой камеры и гребнями вращающихся навстречу друг другу роторов, подвергается интенсивной деформации сдвига. Винтообразные лопасти роторов продвигают материал в осевом направлении, а верхний плунжер подпрессовывает его. Наружный обогрев и значительные деформации сдвига способствуют быстрому нагреванию материала и снижению вязкости.

Оптимальный режим пластикации зависит от содержания пластификатора в смеси и его растворяющей способности по отношению к полимеру. Пластикация происходит также за счет частичной механо-деструкции полимера.

Композиции с высоким содержанием пластификатора получают в лопастных смесителях.

Обработка смеси на обогреваемых вальцах завершает подготовку композиции к формованию. При вальцевании материал многократно пропускают через зазор между двумя валками, вращающимися навстречу друг другу с различной скоростью. Пластичный материал, переходящий на более нагретый валок, подрезают ножом, сворачивают в рулончик и возвращают в зазор. Таким способом достигается изменение ориентации поверхностей раздела и лучшая гомогенизация материала.

Отношение окружных скоростей вращающихся валков — фрикция — должно обеспечивать получение гомогенного, плотного материала без воздушных включений. Величина фрикции зависит от состава композиции и температуры валков. Увеличение окружной скорости валков и фрикции, способствуя диспергированию компонентов и пластикации материала, при недостаточном прогреве может вызвать частичную деструкцию полимера вследствие значительных деформаций сдвига.

Установленные перед каландром смесительные вальцы, осуществляя дополнительную пластикацию материала, снижают нагрузку на каландр; здесь же в смесь добавляются возвратные отходы пленки без предварительного измельчения. Вальцы служат также накопителем, выравнивающим производительность каландра и смесительного оборудования. Однако переработка на вальцах требует большего содержания термостабилизатора из-за возможной деструкции полимера. При вальцевании необходим тщательный температурный контроль.

Для подготовки композиции, включая смешение, гомогенизацию и пластикацию, используют также экструдеры различных конструкций, главным образом двухчервячные, что позволяет осуществить непрерывный процесс производства, в том числе и дозирование компонентов. К достоинствам непрерывного процесса смешения относятся:

1)равномерное питание каландра однородным материалом, что дает пленку стабильного качества;

2)улучшенное качество материала благодаря более мягким условиям переработки при меньшей продолжительности;

3)высокая степень использования оборудования вследствие быстрого прогрева материала в тонком слое за счет тепла внутреннего трения;

4)снижение затрат на электроэнергию и заработную плату;

5) уменьшение производственных площадей.

Однако преимущества непрерывного процесса могут быть реализованы лишь при длительном выпуске пленки одной рецептуры, а получение широкого ассортимента пленок различной рецептуры возможно лишь по более гибкой технологической схеме.

Гомогенизированный и пластифицированный материал еще горячим подается в зазор первой пары валков каландра. В отличие от вальцевания материал при каландровании проходит через зазоры валков каландра однократно, с одновременным уменьшением толщины и увеличением ширины полотна. Зазоры между валками каландра и скорость регулируют таким образом, чтобы из последнего зазора выходила пленка заданной толщины и ширины. Внутренние слои материала в начале движения подвергаются действию сил выталкивания, но затем вовлекаются в зев валков каландра благодаря силам трения. Разность скоростей отдельных слоев материала вызывает значительную деформацию сдвига и способствует пластикации материала.

Достигшая максимального значения скорость средних слоев в момент прохождения зазора затем уменьшается вплоть до скорости валков, в результате чего увеличивается толщина выходящего из зазора полотна. Это связано с материальным балансом процесса, так как если материал в зазоре движется со скоростью, скажем, вдвое превышающей скорость валков, то при постоянном расходе в единицу времени (производительности) толщина поступающего полотна должна быть вдвое больше величины зазора. Утолщение полотна по выходе из зазора обусловлено также обратимой высокоэластической деформацией, которая зависит от реологических свойств материала.

Выносной валок позволяет избежать пульсации производительности, поддерживая избыток материала в зазоре первой пары валков. Основными параметрами процесса являются температура валков, скорость их вращения, величина зазора и коэффициент фрикции.

Чтобы обеспечить прохождение материала от загрузочного до калибрующего зазора, последовательно повышают температуру валков либо (при постоянной температуре) увеличивают скорость валков по ходу движенья материала, создавая фрикцию в зазоре в пределах от 5 до 30% от скорости валков. Величину фрикции устанавливают опытным путем, исходя из свойств материала, скорости процесса и заданной толщины пенки. Для получения равнотолщинной пленки Максимальной ширин очень важно соблюдение постоянной температуры по всей длине рабочей поверхности валков.

Конструкцией каландра предусматривается компенсация прогиба валков, влияющего на точность поперечного сечения готовой пленки. Основными способами компенсации прогиба валков являются бомбировка, перекрещивание валков (рис.4). При бомбировке валки имеют не цилиндрическую форму, а несколько бочкообразную. Метод бомбировки пригоден лишь в узко специализированных каландрах для одного вида композиции и определенного размера пленки, так как изменение состава материала, режима переработки и толщины полотна влияет на величину распорных усилий и, следовательно, ведет к изменению прогиба валка. Кроме того, должна учитываться величина распорных усилий в каждом из зазоров по ходу движения полотна. Поэтому, например, в трехвалковом каландре верхний валок должен быть бочкообразным, средний - цилиндрическим, а нижний — корсетным (слегка вогнутым к центру) для компенсации прогиба среднего валка вниз. Величина бомбировки невелика и составляет 0,3—0,4 мм для бочкообразных и 0 1 мм для корсетных валков.

Перекрещивание валков увеличивает зазор по щелям в результате поворота внешнего калибрующего валка в горизонтальной плоскости вокруг вертикальной оси, проходящей через центр валка. Недостатком метода является смещение формуемого полотна, так как деформация сдвига направлена перпендикулярно движению материала и перекрещивание валка увлекает материал в, сторону.

При контризгибе валков искусственно создают изгибающий момент, противоположный по знаку изгибающему моменту от распорного усилия, прикладывая к концам калибрующего валю а внешнюю силу с помощью специальной гидравлической системы. 3. го позволяет регулировать величину и направление сил контризгибах в соответствии с условиями каландрования.

В современных каландрах используют бомбированные валки в сочетании с перекрещиванием или контризгибом для корректировки толщины пленки при изменении рецептуры или режима процесса.