Смекни!
smekni.com

Диагностика нефтепромысловых трубопроводов (стр. 3 из 6)

• определение вида и размеров дефектов в сварных швах, если они попали в зону шурфа и при осмотре обнаружены их отклонения от требований нормативных документов;

• определение коррозийной активности грунта и наличия блуждающих токов;

• определение фактических значений временного сопротивления овф и предела текучести отф при толщине стенки 5 мм; более 5 мм — определение ударной вязкости KCU металла, параметров напряженно-деформированного состояния в кольцевом сечении.

Оценку технического состояния газопровода проводят путем сравнения фактических значений параметров технического состояния с предельно допустимыми значениями соответствующих определяющих параметров. При достижении предельного состояния принимают решение о ремонте газопровода или его демонтаже. При наличии запаса производят оценку остаточного ресурса по следующим определяющим параметрам:

• переходному сопротивлению изоляционного покрытия;

• изменению пластичности металла труб в результате старения;

• изменению ударной вязкости (трещиностойкости) в результате старения;

• величине напряженно-деформированного состояния при действии фронтальной (общей) коррозии металла;

• величине язвенной (питтинговой) коррозии металла. Остаточный срок службы принимается наименьшим из рассчитанных по определяющим параметрам.

2.2 Метод акустической эмиссии

Метод акустической эмиссии относится к диагностике и направлен на выявление состояния предразрушения трубоопровода путем определения и анализа шумов, сопровождающих процесс образования и роста трещин.

Для регистрации волн акустической эмиссии используют аппаратуру, работающую в широком интервале частот – от кГц до МГц.

При испытании приложение нагрузки приводит к возникновению в зоне предразрушения акустического сигнала. Информация о времени распространения сигнала, его амплитуде, частотном спектре и т.п. воспринимается пьезоэлектрическими акустическими датчиками. Обработка полученной информации служит основанием для заключения о природе, месте расположения и росте дефекта.

Источники акустической эмиссии. Контроль сигналов АЭ

При разрушении почти все материалы издают звук, т. е. испускают акустические волны, воспринимаемые на слух. Большинство конструкционных материалов (например, многие металлы и композиционные материалы) начинают при нагружении испускать акустические колебания в ультразвуковой (неслышимой) части спектра еще задолго до разрушения. Изучение и регистрация этих волн стала возможной с созданием специальной аппаратуры.

Под акустической эмиссией (эмиссия — испускание, генерация) понимается возникновение в среде упругих волн, вызванных изменением ее состояния под действием внешних или внутренних факторов. Акустико-эмиссионный метод основан на анализе этих волн и является одним из пассивных методов акустического контроля. В соответствии с ГОСТ 27655—88 «Акустическая эмиссия. Термины, определения и обозначения» механизмом возбуждения акустической эмиссии (АЭ) является совокупность физических и (или) химических процессов, происходящих в объекте контроля. В зависимости от типа процесса АЭ разделяют на следующие виды:

• АЭ материала, вызываемая динамической локальной перестройкой его структуры;

•АЭ трения, вызываемая трением поверхностей твердых тел в местах приложения нагрузки и в соединениях, где имеет место податливость сопрягаемых элементов;

• АЭ утечки, вызванная результатом взаимодействия протекающей через течь жидкости или газа со стенками течи и окружающим воздухом;

• АЭ при химических или электрических реакциях, возникающих в результате протекания соответствующих реакций, в том числе сопровождающих коррозийные процессы;

• магнитная и радиационная АЭ, возникающая соответственно при перемагничивании материалов (магнитный шум) или в результате взаимодействия с ним ионизирующего излучения;

• АЭ, вызываемая фазовыми превращениями в веществах и материалах.

Таким образом, АЭ — явление, сопровождающее едва ли не все физические процессы, протекающие в твердых телах и на их поверхности. Возможности регистрации ряда видов АЭ вследствие их малости, особенно АЭ, возникающих на молекулярном уровне, при движении дефектов (дислокаций) кристаллической решетки, ограничивается чувствительностью аппаратуры, поэтому в практике АЭ контроля большинства промышленных объектов, в том числе объектов нефтегазовой промышленности, используют первые три вида АЭ. При этом необходимо иметь в виду, что АЭ трения создает шум, приводит к образованию ложных дефектов и является одним из основных факторов, усложняющих применение АЭ метода. Кроме того, из АЭ первого вида регистрируются только наиболее сильные сигналы от развивающихся дефектов: при росте трещин и при пластическом деформировании материала. Последнее обстоятельство придает АЭ методу большую практическую значимость и обусловливает его широкое применение для целей технической диагностики. Целью АЭ контроля является обнаружение, определение координат и слежение (мониторинг) за источниками акустической эмиссии, связанными с несплошностями на поверхности или в объеме стенки объекта контроля, сварного соединения и изготовляемых частей и компонентов. Все индикации, вызванные источниками АЭ, должны быть при наличии технической возможности оценены другими методами неразрушающего контроля.

Регистрация сигнала от источника АЭ осуществляется одновременно с шумом постоянного или переменного уровня. Шумы являются одним из основных факторов, снижающих эффективность АЭ контроля. Ввиду разнообразия причин, вызывающих их появление, шумы классифицируются в зависимости от:

•механизма генерации (источника происхождения) — акустические (механические) и электромагнитные;

• вида сигнала шумов — импульсные и непрерывные;

• расположения источника — внешние и внутренние.

Основными источниками шумов при АЭ контроле объектов являются:

• разбрызгивание жидкости в емкости, сосуде или трубопроводе при его наполнении;

• гидродинамические турбулентные явления при высокой скорости нагружения;

•трение в точках контакта объекта с опорами или подвеской, а также в соединениях, обладающих податливостью;

• работа насосов, моторов и других механических устройств;

• действие электромагнитных наводок;

• воздействие окружающей среды (дождя, ветра и пр.);

• собственные тепловые шумы преобразователя АЭ и шум входных каскадов усилителя (предусилителя).

Для подавления шумов и выделения полезного сигнала обычно применяют два метода: амплитудный и частотный. Амплитудный заключается в установлении фиксированного или плавающего уровня дискриминационного порога Un, ниже которого сигналы АЭ аппаратура не регистрирует. Фиксированный порог устанавливается при наличии шумов постоянного уровня, плавающий — переменного. Плавающий порог Un, устанавливаемый автоматически за счет отслеживания общего уровня шумов, позволяет, в отличие от фиксированного, исключить регистрацию части сигналов шума как сигнала АЭ.

Частотный метод подавления шумов заключается в фильтрации сигнала, принимаемого приемниками АЭ, с помощью низко- и высокочастотных фильтров (ФНЧ/ФВЧ). В этом случае для настройки фильтров перед проведением контроля предварительно оценивают частоту и уровень соответствующих шумов.

После прохождения сигнала через фильтры и усилительный тракт, наряду с трансформацией волн на поверхности контролируемого изделия, происходит дальнейшее искажение первоначальных импульсов источника АЭ. Они приобретают двухполярный осциллирующий характер. Дальнейший порядок обработки сигналов и использования их в качестве информативного параметра определяется компьютерными программами сбора данных и их постобработки, использованными в соответствующей аппаратуре различных производителей. Правильность определения числа событий и их амплитуда будут зависеть не только от возможности их регистрации (разрешающей способности аппаратуры), но и от способа регистрации.

После обработки принятых сигналов результаты контроля представляют в виде идентифицированных (с целью исключения ложных дефектов) и классифицированных источников АЭ.

Выявленные и идентифицированные источники АЭ рекомендуется разделять на четыре класса:

• первый — пассивный источник, регистрируемый для анализа динамики его развития;

• второй — активный источник, требующий дополнительного контроля с использованием других методов;

• третий — критически активный источник, требующий контроля за развитием ситуации и принятия мер по подготовке возможного сброса нагрузки;

• четвертый — катастрофически активный источник, требующий немедленного уменьшения нагрузки до нуля либо до величины, при которой активность источника снижается до уровня второго или третьего класса.

Учитывая большое число параметров, характеризующих АЭ, отнесение источников к соответствующему классу осуществляется с помощью ряда критериев, учитывающих набор параметров. Выбор критериев осуществляется по ПБ 03-593-03 в зависимости от механических и акустико-эмиссионных свойств материалов контролируемых объектов. К числу критериев относятся следующие:

• амплитудный, основанный на регистрации амплитуд импульсов (не менее трех от одного источника) и их сравнении с величиной превышения порога (А,), которая соответствует росту трещины в материале.

• интегральный, основанный на сравнении оценки активности источников АЭ Fс относительной силой этих источников Jkв каждом интервале регистрации.

• локально-динамический, использующий изменение числа АЭ локационных событий на ступенях выдержки давления и динамику изменения энергии или квадрата амплитуды лоцированного события с ростом нагруженности объекта. Этот критерий используется для оценки состояния объектов, структура и свойства материала которых точно не известны.