Обратная задача. Пусть известны собственные частоты р колебаний вала, коэффициенты жесткости k1, k2 участков вала между дисками. Необходимо определить неизвестные моменты инерции масс двух дисков при известном моменте инерции третьего диска.
Пусть, например, известен момент инерции второго диска. Тогда, если рассмотреть снова две собственные частоты р1 и р2 колебаний вала, то уравнения (2.17) представляют собой систему алгебраических уравнений с двумя неизвестными I1, I3.
Подставляя выражение
Из последнего равенства выразим
Здесь
Подставим теперь выражение (3.6) в первое уравнение системы (3.5). После преобразований имеем
где
Решая уравнение (3.7) относительно неизвестной
дискриминант которого имеет вид
Тогда
Таким образом, моменты инерции масс двух дисков находятся однозначно по формулам (3.7) и (3.8). Подобные формулы можно получить для моментов инерции любых двух дисков при известном моменте инерции одного из трех дисков.
Аналогичная задача диагностирования решаема и для вала с четырьмя дисками, частотное уравнение которого получено нами в виде (2.20).
Вычисления, проведенные в пакете MAPLE, показывают, что из системы (3.4) можно однозначно определить коэффициентыжесткости двух любых участков вала между дисками при известном коэффициенте жесткости одного из трех участков. Причем все эти коэффициенты упругих закреплений определяются по двум собственным частотам крутильных колебаний вала.
Рассмотрим применение метода решения обратной задачи по определению характеристик вала с дисками на конкретных примерах.
Пример 4
Известны собственные частоты крутильных колебаний вала с тремя дисками:
Решение.
Подставляя значения
Пример 5
По двум собственным частотам
Решение
Уравнение (2.17) при заданных значениях
из которой получаем, что
Пример 6
Рассматривается вал с четырьмя дисками, для которого известны
Решение
Подставляя значения
Рассмотрим программные реализации решений обратных задач.
Решение примера 4
> restart;
> i1:=0.2;
> k1:=0.1;
> k2:=0.2;
> p:=.8480705122;
> p:=1.667566013;
> p:=-1.667566013;
> t1:=.5172825777-.7192235937e-1*(i1+i2)/i1/i2-.1438447187*(i2+i3)/i2/i3+.2e-1*(i1+i2+i3)/i1/i2/i3 = 0;
> t2:=7.732717430-.2780776408*(i1+i2)/i1/i2-.5561552816*(i2+i3)/i2/i3+.2e-1*(i1+i2+i3)/i1/i2/i3 = 0;
> t3:=7.732717430-.2780776408*(i1+i2)/i1/i2-.5561552816*(i2+i3)/i2/i3+.2e-1*(i1+i2+i3)/i1/i2/i3 = 0;
> solve({t1,t2,t3},{i2,i3});
Решение примера 5
> restart;
> i1:=0.2;
> i2:=0.3;
> i3:=0.1;
> p:=.8480705122;
> p:=1.667566013;
> t1:=p^4-(k1*(i1+i2)/(i1*i2)+k2*(i2+i3)/(i2*i3))*p^2+k1*k2*(i1+i2+i3)/(i1*i2*i3)=0;
> t2:=p^4-(k1*(i1+i2)/(i1*i2)+k2*(i2+i3)/(i2*i3))*p^2+k1*k2*(i1+i2+i3)/(i1*i2*i3)=0;
> solve({t1,t2},{k1,k2});
Решение примера 6
> restart;
> i4:=0.2;
> k1:=0.1;
> k2:=0.2;