Смекни!
smekni.com

Динамическое поведение механической системы с упругими связями (стр. 2 из 5)

Пусть в произвольный момент система занимает положение, в котором

S>0, а скорость груза

направлена вдоль опорной плоскости в положительном направлении координаты S.

Вычислим кинетическую энергию системы как сумму кинетических энергий тел, образующих механическую систему.

Груз 1 совершает поступательное движение. Его кинетическая энергия:

Блок 2 невесом и его кинетическая энергия равна 0.

Блок 3 совершает вращательное движение вокруг неподвижной оси. Его кинетическая энергия:

где

— момент инерции блока 3 относительно оси вращения,

модуль угловой скорости.

Каток 4 совершает плоскопараллельное движение, поэтому его кинетическая энергия равна:

Тогда кинетическая энергия всего механизма имеет вид:

(2)

Так как механическая система (мс) имеет 1 степень свободы, то величины

легко выражаются через
. Связи между этими величинами будут иметь вид:

(3)

Блок 3 – сплошной однородный цилиндр, для катка 4 известен радиус инерции, поэтому моменты инерции этих тел относительно осей, проходящих через их центры масс и перпендикулярных плоскости чертежа, будут вычисляться:

Подставляя моменты инерции и выражения (3) в формулу (2), получим полную кинетическую энергию системы:

(4)

где величина

называется приведенной массой.
кг

Теперь вычислим правую часть уравнения (1) – сумму мощностей внешних и внутренних сил, при этом учтем, что мощность силы равна скалярному произведению вектора силы на скорость точки приложения силы, а мощность пары сил – скалярному произведению вектора пары на угловую скорость твердого тела, к которому приложена пара:


Или

Рассматриваемая нами механическая система является неизменяемой, так как входящие в систему тела абсолютно твердые, а нити — абсолютно гибкие и нерастяжимые. Следовательно, скорости их точек относительно друг друга равны нулю и сумма мощностей внутренних сил также будет равна нулю

(6)

С учетом кинематических соотношений (3) сумму мощностей внешних

сил преобразуем к виду:

(7)

Где

- приведенная сила.

Упругую силу считаем пропорциональной удлинению пружины. Полное удлинение пружины

равно сумме статического
и динамического
удлинений

Тогда

Приведенная сила в развернутом виде примет вид:

(8)

Где

- приведенная жесткость,

- приведенный коэффициент сопротивления.

Подставляя выражения (4), (6) и (7) в (1), получаем после сокращения на

дифференциальное уравнение движения системы:

(9)

Учтем, что при равновесии системы (возмущающая сила отсутствует) скорость и ускорение груза равны нулю по определению

, а координата груза равна нулю в силу постановки задачи (начало отсчета совпадает с положением равновесия груза 1 S=0). В этом случае уравнение (9) приводится к виду
, и условием равновесия системы будет служить уравнение

Откуда

(10)

Подставляя (10) в уравнение (9) и учитывая формулу (8) для приведенной силы, получаем дифференциальное уравнение движения системы

Представим данное уравнение в виде:

(11)

где введены коэффициенты, имеющие определенный физический смысл:

- частота собственных колебаний,

- показатель степени затухания колебаний.

- относительная амплитуда возмущающей силы.

Начальные условия:

(12)

Уравнения (11), (12) представляют математическую модель для решения второй задачи динамики.

2. Определение реакций внешних и внутренних связей

Для решения этой задачи расчленим механизм на отдельные части и построим расчетные схемы для каждого тела (рис.3). На расчетных схемах, помимо ранее введенных сил, показаны реакции (силы натяжения) нитей, связывающих груз и блок 2, блок 2 и горизонтальную поверхность, блоки 2 и 3, блок 3 и каток 4:

.

К каждому телу, изображенному на расчетной схеме (рис. 3), применим

две основные теоремы механики материальной системы:

теорему об изменении количества движения

(13)

и теорему об изменении кинетического момента относительно оси z, проходящей через центр масс твердого тела


(14)

Для каждого тела данные уравнения запишем в проекциях на оси координат соответственно схемам рис. 3:

тело 1:

тело 2:

тело 3:

тело 4:

Из этих уравнений можно получить формулы для реакций связей:


(15)

Для проверки выражений реакций связей, подставим их в оставшееся неиспользованное уравнение:

После подстановки и упрощений получаем уравнение, совпадающее с уравнением (11).

3. Определение закона движения системы

Найдем решение дифференциального уравнения движения механической системы (11). Данное дифференциальное уравнение относится к классу линейных неоднородных дифференциальных уравнений с постоянными коэффициентами. Решение таких уравнений можно найти аналитически. Общее решение неоднородного дифференциального уравнения (11) складывается из общего решения однородного уравнения

(16)

соответствующего данному неоднородному уравнению, и какого-либо частного решения

уравнения (11), т.е.

(17)

Решение однородного уравнения (16) ищем в виде функции

(18)

Подставив (18) в (16), получим:

Так как мы ищем нетривиальное решение, то

. Следовательно, должно выполняться условие