Смекни!
smekni.com

Дифференциальные и интегральные функции распределения (стр. 2 из 3)

Рис. 4. Кривая плотности распределения вероятностей (дифференциальная функция распределения случайной величины)

Плотность распределения вероятностей f (x) называют

дифференциальной функцией распределения:

Пример распределения дискретной случайной величины приведен на рис. 5.


Рис. 5. Распределение дискретной случайной величины

Глава 2. Числовые параметры законов распределения. Центр распределения. Моменты распределений

Функция распределения является самым универсальным способом описания поведения результатов измерений и случайных погрешностей. Однако для их определения необходимо проведение весьма длительных и кропотливых исследований и вычислений. В большинстве случаев бывает достаточно охарактеризовать случайные величины специальными параметрами, основными из которых являются:

− центр распределения;

− начальные и центральные моменты и производные от них коэффициенты – математическое ожидание (МО), среднее квадратическое отклонение (СКО), эксцесс, контрэксцесс и коэффициент асимметрии.

Координата центра распределения Xц определяет положение случайной величины на числовой оси и может быть найдена несколькими способами. Наиболее фундаментальным является определение центра по принципу симметрии вероятностей, т.е. нахождение такой точки XMна оси х, слева и справа от которой вероятности появления различных значений случайных погрешностей равны между собой и составляют P1= P2= 0,5:


Точка XMназывается медианой, или 50%-ным квантилем. Для его нахождения у распределения случайной величины должен существовать только нулевой начальный момент. Координата Хц может быть определена и как центр тяжести распределения, т.е. как математическое ожидание случайной величины. Это такая точка X, относительно которой опрокидывающий момент геометрической фигуры, огибающей которой является кривая f (x), равен нулю:

У некоторых распределений, например, у распределения Коши, не существует МО, так как определяющий его интеграл расходится.

При симметричной кривой плотности распределения вероятностей f (x) оценкой центра распределения может служить абсцисса моды распределения, т.е. координата максимума плотности распределения Xm. Однако есть распределения, у которых не существует моды, например, равномерное. Распределения с одним максимумом называются одномодальными, с двумя – двухмодальные. Те распределения, у которых в средней части расположен не максимум, а минимум, называются антимодальными.

Для двухмодальных распределений применяется оценка центра в виде центра сгибов:

где xc1, xc2 – сгибы, т.е. абсциссы точек, в которых распределение достигает максимумов.

Для ограниченных распределений применяется оценка в виде центра размаха:


где x1, x2 – первый и последний члены вариационного ряда, соответствующего распределению.

При выборе оценки центра распределения необходимо учитывать ее чувствительность к наличию промахов в обрабатываемой совокупности данных. Исключительно чувствительны к наличию промахов: оценка в виде центра размаха Xp(определяется по наблюдениям, наиболее удаленным от центра, каковыми и являются промахи); оценка в виде среднего арифметического (ослабляется лишь из n раз). Защищенными от влияния промахов являются квантильные оценки: медиана XMи центр сгибов Xc, поскольку они не зависят от координат промахов.

При статистической обработке данных важно использовать наиболее эффективные, т.е. имеющие минимальную дисперсию, оценки центра распределения, так как погрешность в определении Xц влечет за собой неправильную оценку СКО, границ доверительного интервала, эксцесса и т.д.

Все моменты представляют собой некоторые средние значения, причем, если усредняются величины, отсчитываемые от начала координат, моменты называются начальными, а если от центра распределения – то центральными.

Начальные моменты k-го порядка определяются формулами

где pi– вероятность появления дискретной величины. Здесь и ниже первая формула относится к непрерывным, а вторая к дискретным случайным величинам. Из начальных моментов наибольший интерес представляет математическое ожидание МО случайной величины (k = 1):

Центральные моменты k-го порядка рассчитываются по формулам

Из центральных моментов особенно важную роль играет второй момент (k=2), дисперсия случайной величины D

Дисперсия случайной величины характеризует рассеяние отдельных ее значений. Дисперсия имеет размерность квадрата случайной величины и выражает как бы мощность рассеяния относительно постоянной составляющей. Однако чаще пользуются положительным корнем квадратным из дисперсии – средним квадратическим отклонением (СКО) σ = D, которое имеет размерность самой случайной величины.

Третий центральный момент


служит характеристикой асимметрии, или скошенности распределения. С его использованием вводится коэффициент асимметрии υ = μ3 / σ³. Для нормального распределения коэффициент асимметрии равен нулю. Вид законов распределения при различных значениях коэффициента асимметрии приведен на рис. 6, а.

Четвертый центральный момент

служит для характеристики плосковершинности или островершинности распределения. Эти свойства описываются с помощью эксцесса ε = μ4 / σ4.

Его значения лежат в диапазоне от 1 до ∞. Для нормального распределения ε = 3. Вид дифференциальной функции распределения при различных значениях эксцесса показан на рис. 6, б.


Рис. 6. Вид дифференциальной функции распределения при различных значениях коэффициента асимметрии (а) и эксцесса (б)

Дадим более строгое определение постоянной систематической и случайной погрешностей.

Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:

Θ = m1−Q,

а случайной погрешностью – разность между результатом единичного наблюдения и математическим ожиданием результатов:

Δx = xi− m1.

В этих обозначениях истинное значение измеряемой величины составляет

Q = xi− Θ − Δx.


Глава 3. Оценка результата измерения

На практике все результаты измерений и случайные погрешности являются величинами дискретными, т.е. величинами xi, возможные значения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров, их функций распределения на основании выборок – ряда значений xi, принимаемых случайной величиной x в n независимых опытах. Используемая выборка должна быть репрезентативной (представительной), т.е. должна достаточно хорошо представлять пропорции генеральной совокупности.

Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок – частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выборки.

К оценкам, получаемым по статистическим данным, предъявляются требования состоятельности, несмещенности и эффективности. Оценка называется состоятельной, если при увеличении числа наблюдений она стремится к истинному значению оцениваемой величины.

Оценка называется несмещенной, если ее математическое ожидание равно истинному значению оцениваемой величины. В том случае, когда можно найти несколько несмещенных оценок, лучшей из них считается та, которая имеет наименьшую дисперсию. Чем меньше дисперсия оценки, тем более эффективной считают эту оценку.

Точечной оценкой математического ожидания МО результата измерений является среднее арифметическое значение измеряемой величины


При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии, определяемая по формуле

является несмещенной и состоятельной.

Оценка среднего квадратического отклонения СКО

Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторении несколько раз серий из n наблюдений каждый раз будут получаться различные оценки X и σ. Рассеяние этих оценок целесообразно оценивать СКО Sx. Оценка СКО среднего арифметического значения