Смекни!
smekni.com

Електромагнітний витратомір для трубопроводів великих діаметрів (стр. 2 из 4)

Особистий внесок здобувача в одержання наукових результатів полягає в безпосередній участі в постановці і виконанні всіх теоретичних та експериментальних досліджень у роботі на всіх її етапах.

Список наукових праць за темою дисертації наведено в кінці автореферату. Одноосібно написані три роботи [5,8,10], у яких приведено дослідження автора щодо розподілу магнітного поля на межі циліндричної магнітної системи і одержано аналітичний вираз для розподілу магнітного поля розсіяння найбільш перспективних циліндричних електромагнітних ЗВТ витрати рідини в трубопроводах великих діаметрів, що дозволило визначити оптимальні конструктивні параметри таких ЕМВ ЛМП.

У публікаціях із співавторами, вклад автора полягає у створенні математичної моделі електромагнітного витратоміра [1,3,7] і розробці методів рішення цієї задачі [2,6], в адаптації положень дисертації до методики вимірювань обўємної витрати рідини – КНД 50-052-95 [11], у розгляді [4,9] питань оптимізації параметрів МГД ЛМП, розробки нових моделей ЕМВ та їх дослідженні, в отриманні результатів вимірювань, їх обробці та оцінці похибок вимірювань витрати рідини в трубопроводах великих діаметрів [11,12].

Апробація результатів дисертації. Основні положення і результати виконаних в дисертації досліджень оприлюднено на семи міжнародних і українських науково-технічних конференціях (НТК) у період з 1994р. по 1999 р., а саме:

- I Українській НТК “Метрологічне забезпечення в галузі електричних, магнітних та радіотехнічних вимірювань”. - Харків, 1994;

- Українській НТК “Метрологія та вимірювальна техніка”. - Харків, 1995;

- Украинской НТК “Метрологическое обеспечение средств измерений больших длин и средств измерений геодезического назначения”. - Харьков, 1996;

- II Міжнародній НТК “Метрологія в електроніці”. - Харків, 1997;

- 8 International Metrology Congress, Besancon, France. 1997;

- I Міжнародній НТК “Метрологія у механіці”. - Харків, 1998;

- II Міжнародній НТК “Метрологія та вимірювальна техніка”. - Харків, 1999.

Публікації. За результатами досліджень, виконаних в дисертації, опубліковано 12 наукових праць, 5 з них опубліковані в фахових періодичних наукових журналах, 5 робіт опубліковані в збірниках наукових праць міжнародних та українських конференцій і 2 роботи – в тезах українських конференцій з метрології.

Структура дисертації. Дисертація складається із вступу, чотирьох розділів, висновку, списку використаних джерел та додатків. Повний обсяг дисертації налічує 173 сторінки, де 19 малюнків, 11 таблиць та 5 додатків. Список використаних джерел має 127 найменувань.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі дано коротку характеристику дисертаційної роботи: обгрунтовано актуальність теми; сформульовано цілі і задачі дослідження; визначено наукову новизну і практичну цінність роботи; викладено основні положення, що виносяться на захист; визначено авторський внесок у сумісних роботах, а також наведено відомості про апробацію результатів виконаних досліджень.

У першому розділі наведено результати аналітичного огляду сучасного стану методів та засобів вимірювальної техніки для вимірювання об'ємної витрати рідинних потоків у трубопроводах великих діаметрів.

Показано, що поставленому завданню щодо створення ЗВТвитрати рідинних середовищ у заповнених трубопроводах у найбільшіймірі відповідає електромагнітний метод, що дозволяє створювати прилади з високими метрологічними й експлуатаційними характеристиками, надійністю, стабільністю показів, можливістю їх використання в автономному режимі і передачі інформації на великі відстані без втрат і спотворень. Проте засоби вимірювальної техніки для трубопроводів великих діаметрів не можуть копіювати традиційні електромагнітні витратоміри для трубопроводів малих діаметрів, де магнітні системи охоплюють трубу подібно системі відхилення кінескопа, оскільки в цьому разі на діаметрах 1000 мм і більше їх вага складатиме декілька тисяч кілограмів, тобто вони мають великі габарити, металоємність і енерговитрату і тому практично не застосовуються для вимірювання витрати рідини у трубопроводах великих діаметрів. Водночас, з огляду на достоїнства електромагнітного методу, дуже перспективним є створення компактних ЕМВ змалою металоємністюна основі МГД ЛМП, які мають низьку енерговитрату, невелику вартість, зручність в експлуатації та забезпечують вимірювання витрати у заповнених трубопроводах великих діаметрів за методом “площа-швидкість”, заснованим на визначенні об'ємної витрати рідини за швидкістю потоку в одній точці (точці середньої швидкості) поперечного перетину трубопроводу і площіостаннього, відповідно до ISO 7145 і ГОСТ 8. 361-79. Однак до цього дня такі ЗВТ були недостатньо вивчені.

На підставі проведеного детального аналізу визначено мету і поставлено задачі, які вирішуються в наступних розділах.

В другому розділі проведено теоретичні дослідження найбільш перспективного на цей час витратоміра з циліндричним МГД ЛМП на основі розв'язання системи рівнянь магнітної гідродинаміки при відповідних граничних умовах (оскільки сигнал таких ЗВТ формується в потоці рідини, що рухається в його магнітному полі), яка складається з рівнянь Максвеллаі рівнянь гідродинаміки (рівняння нерозривності і рівняння руху) для в'язкої нестисливої провідної рідини

Показано, що теорію роботи МГД ЛМП до теперішнього часу було розглянуто в недостатній мірі. Це обумовлено тим, що теоретичні дослідження пов'язані з математичними труднощами опису магнітогідродинамічних процесів у робочій області таких перетворювачів. Задача ускладнюється ще й тим, що шукане рішення повинно бути у високому ступені адекватним процесам, які відбуваються в робочій області МГД ЛМП, а саме індукованаЕРС (сигнал ЕМВ) повинна визначатися тільки швидкістю прямування рідини в “точці” виміру – точці середньої швидкості і не залежати, відповідно до ISO 7145 і ГОСТ 8.361-79, від епюри швидкостей і її градієнтів у трубопроводі, тобто питання стосується обліку "тонких" моментів – впливу розподілу швидкості вимірюваного потоку та її градієнтів на покази МГД ЛМП.

Розглянуто математичну модель МГД ЛМП і показано, що сигнал таких ЗВТ – різниця потенціалів на вимірювальних електродах перетворювача, що контактують із досліджуваним потоком (рис.1), визначається розподілом індукованих струмів у вимірюваному середовищі

Сформульовано задачу синтезу МГД ЛМП, яка дозволяє визначити їх оптимальні параметри та полягає у визначенні розподілу індукованих струмів j (електричного потенціалу j) у робочій областіперетворювача, обтічного потоком V в'язкого нестисливого провідного середовища на основі розв'язання системи двох задач Неймана для рівнянь Пуансона і Лапласа для електричного та магнітного потенціалів відповідно:

Показано, що при цьому розподіл швидкостей у вимірюваному потоці рідини визначається системою рівнянь класичної гідродинаміки.

Для дослідження питання щодо ступеня залежності показів МГД ЛМП від поперечного градієнта швидкості, яке на сьогодні лишається відкритим і потребує відповіді, розглянуто і вирішено задачу про формування сигналу МГД ЛМП, встановленого в трубопроводі радіуса R та обтічного турбулентним потоком нестисливої провідної рідини (рис.2), де Е1(r, 0,758R, 0) та Е2(-r, 0,758R, 0) – розташовані у точках середньої швидкості електроди МГД ЛМП.

На основі отриманого рішення цієї задачі визначено сигнал МГД ЛМП при його використанні як ЕМВ у трубопроводах великих діаметрів при довільному розподілі магнітної індукції та поля швидкостей

(4)

де

- приріст функції Гріна на електродах МГД ЛМП,
- функція Гріна абофункція впливу у задачіНеймана для рівняння Пуассона (3) в областіW- внутрішності трубопроводу радіуса R із вставленим у нього циліндричним перетворювачем радіуса r довжиною 2l (рис.1), x, h, V - відповідна x, y, zдекартова система поточних координат.

Отже, доданок d (l, r)

(5)

обумовлений геометричними та конструктивними параметрами МГД ЛМП та градієнтом швидкості потоку, і визначає ступінь залежності його показів від характеристик потоку.

Проведено ретельний аналіз величиниd (l, r) з метою її мінімізації, тобто мінімізації залежності показів розроблюваного ЕМВ від структури потоку, що вимірюється.

За умови використання МГД ЛМП у трубопроводах великих діаметрів та згідно з ГОСТ 8.361 при вимірюванні розвинених турбулентних течій епюру швидкостей у трубопроводі задано у вигляді

(6)

деl = 0,0032+0,221ЧRe-0,237 – коефіцієнт опору трубопроводу, визначений універсальним співвідношенням у формі Никурадзе; n - кінематичний коефіцієнт в'язкості вимірюваного середовища;

- відстань від осі трубопроводу до аналізованоїточки;
- динамічна швидкість – величина, обумовлена тертям на стінці і густиною рідини.

Експериментально визначено значення магнітної індукції на межі z = ± l (рис.1), що дозволило отримати аналітичний вираз, який з достатньою точністю (похибка ~ 1%) описує розподіл магнітного поля розсіяння МГД ЛМП у вимірюваному середовищі в залежності від параметрів магнітної системи перетворювача. Це співвідношення є основоположним при розробці МГД ЛМП.